• 제목/요약/키워드: uplift behavior

검색결과 102건 처리시간 0.02초

소형 압력 토조내에 타입된 말뚝의 인발 거동과 극한 인발 지지력 결정에 관한 연구 (Study on Pullout Behavior and Determination of Ultimate Uplift Capacity of Pile Driven in Small Pressured Chamber)

  • 최용규
    • 한국지반공학회지:지반
    • /
    • 제11권2호
    • /
    • pp.19-28
    • /
    • 1995
  • 소형 압력 토조(small pressure chamber)를 이용하여 포화된 사질토에 타입된 폐단 강관 말뚝의 인발거동 특성을 연구하였다. 소형 압력 토조 시험에서는 인발 하중이 인발변위와 함께 증가하다가 급작스러운 미끄러짐 변위가 발생되는 현상이 2-3회 반복되다가 완전 인발파괴에 이르게 되는데, 이때 첫번째 미끄러짐 변위가 발생하는 하중의 크기를 극한 인발 지지력으로 정의할 수 있다. 또한, 소형 압력 토조 시험에서는 미세한 시험 조건에 의해서도 극한 인발 지지력의 크기가 50% 이상의 오차를 나타낼 수도 있으므로 모형 지반을 형성할 때마다 인발 재하 시험에 의하여 극한 인발 지지력을 결정하여 사용하는 것이 좋을 것으로 판단되며, 이때 1차 인발 시험에 의해 교란된 지반의 상태는 모형 말뚝의 크기에 적합한 타격에너지를 가해주어 회복시킬 수 있다.

  • PDF

Nonlinear modeling of roof-to-wall connections in a gable-roof structure under uplift wind loads

  • Enajar, Adnan F.;Jacklin, Ryan B.;El Damatty, Ashraf A.
    • Wind and Structures
    • /
    • 제28권3호
    • /
    • pp.181-190
    • /
    • 2019
  • Light-frame wood structures have the ability to carry gravity loads. However, their performance during severe wind storms has indicated weakness with respect to resisting uplift wind loads exerted on the roofs of residential houses. A common failure mode observed during almost all main hurricane events initiates at the roof-to-wall connections (RTWCs). The toe-nail connections typically used at these locations are weak with regard to resisting uplift loading. This issue has been investigated at the Insurance Research Lab for Better Homes, where full-scale testing was conducted of a house under appropriate simulated uplift wind loads. This paper describes the detailed and sophisticated numerical simulation performed for this full-scale test, following which the numerical predictions were compared with the experimental results. In the numerical model, the nonlinear behavior is concentrated at the RTWCs, which is simulated with the use of a multi-linear plastic element. The analysis was conducted on four sets of uplift loads applied during the physical testing: 30 m/sincreased by 5 m/sincrements to 45 m/s. At this level of uplift loading, the connections exhibited inelastic behavior. A comparison with the experimental results revealed the ability of the sophisticated numerical model to predict the nonlinear response of the roof under wind uplift loads that vary both in time and space. A further component of the study was an evaluation of the load sharing among the trusses under realistic, uniform, and code pressures. Both the numerical model and the tributary area method were used for the load-sharing calculations.

지반-구조물 동적 상호작용에 의한 Rocking현상과 그에 따른 지하 중공구조물의 부상거동 (Ground-Structure Seismic Interaction-Induced Rocking Behavior and the Uplift Behavior of Underground Hollow Structure)

  • 강기천
    • 대한토목학회논문집
    • /
    • 제32권3C호
    • /
    • pp.85-94
    • /
    • 2012
  • 본 논문은 액상화 지반에서의 지반-지하 중공구조물 상호작용에 따른 구조물의 rocking현상을 조사하기 위해서 수행한 원심모형실험에 관하여 서술하고 있다. 지진이 발생하였을 때 지반이 강한 진동에 노출되면 상대밀도가 낮은 느슨한 모래지반에서는 액상화가 발생하며, 액상화된 지반보다 작은 단위중량을 가진 지하 중공구조물은 부상한다. 지하 중공구조물이 부상하는 동안에 구조물의 동적 거동과 구조물의 부상량에 대한 원지반의 영향을 평가하기 위하여 원지반의 상대밀도를 다르게 모델지반을 제작하였고, 아크릴 박스를 이용하여 트랜치를 제작하여 모형실험을 수행하였다. 실험결과, 액상화된 원지반의 측방유동 및 주변지반의 전단변형에 의해 야기되는 지하 중공구조물의 rocking현상이 지하 중공구조물의 부상량의 규모에 크게 기여하는 것으로 나타났다.

Model studies of uplift capacity behavior of square plate anchors in geogrid-reinforced sand

  • Keskin, Mehmet S.
    • Geomechanics and Engineering
    • /
    • 제8권4호
    • /
    • pp.595-613
    • /
    • 2015
  • An experimental investigation into the uplift capacity of horizontal square plate anchors in sand with and without geogrid reinforcement is reported. The parameters investigated are the effect of the depth of the single layer of geogrid, vertical spacing of geogrid layers, number of geogrid layers, length of geogrid layers, the effects of embedment depth, and relative density of sand. A series of three dimensional finite element analyses model was established and confirmed to be effective in capturing the behaviour of plate anchor-reinforced sand by comparing its predictions with experimental results. The results showed that the geogrid reinforcement had a considerable effect on the uplift capacity of horizontal square plate anchors in sand. The improvement in uplift capacity was found to be strongly dependent on the embedment depth and relative density of sand. A satisfactory agreement between the experimental and numerical results on general trend of behaviour and optimum geometry of reinforcement placement is observed. Based on the model test results and the finite element analyses, optimum values of the geogrid parameters for maximum reinforcing effect are discussed and suggested.

Uplift response of circular plates as symmetrical anchor plates in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • 제6권4호
    • /
    • pp.321-340
    • /
    • 2014
  • Uplift response of symmetrical circular anchor plates has been evaluated in physical model tests and numerical simulation using Plaxis. The behavior of circular anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm diameter of circular plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for circular anchor plates. Numerical analysis using circular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in the loose sand.

Square plates as symmetrical anchor plates under uplift test in loose sand

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • 제6권6호
    • /
    • pp.593-612
    • /
    • 2014
  • The uplift response of symmetrical square anchor plates has been evaluated in physical model tests and numerical simulations using Plaxis. The behavior of square anchor plates during uplift test was studied by experimental data and finite element analyses in loose sand. Validation of the analysis model was also carried out with 50 mm, 75 mm and 100 mm Length square plates in loose sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 100 mm computed maximum displacements was excellent for square anchor plates. Numerical analysis using square anchor plates was conducted based on the hardening soil model (HSM). The research has shown that the finite element results are higher than the experimental findings in loose sand.

Simple Evaluation Method of Uplift Resistance for Frictional Shallow Anchors in Rock

  • Kim, Daehong;Lee, Seungho
    • 한국지반환경공학회 논문집
    • /
    • 제23권1호
    • /
    • pp.15-23
    • /
    • 2022
  • This paper presents the results of full-scale load tests performed frictional anchors to various lengths at several sites in Korea. Various rock types were tested, ranging from highly weathered shale to sound gneiss. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. Laboratory tests were also conducted to investigate the influence of the corrosion protection sheath on the bond strength. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined. By evaluation of the ultimate uplift capacity of anchor foundations in a wide range of in situ rock masses, rock classification suitable for structural foundation was developed. Finally, a very simple and economical design procedure is proposed for rock anchor foundations subjected to uplift tensile loads.

Comparative field tests on uplift behavior of straight-sided and belled shafts in loess under an arid environment

  • Qian, Zeng-zhen;Lu, Xian-long;Yang, Wen-zhi;Cui, Qiang
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.141-160
    • /
    • 2016
  • This study elucidates the uplift behaviors of the straight-sided and belled shafts. The field uplift load tests were carried out on 18 straight-sided and 15 belled shafts at the three collapsible loess sites under an arid environment on the Loess Plateau in Northwest China. Both the site conditions and the load tests were documented comprehensively. In general, the uplift load-displacement curves of the straight-sided and belled shafts approximately exhibited an initial linear, a curvilinear transition, and a final linear region, but did not provide a well defined peak or asymptotic value of the load, and therefore their uplift resistances should be interpreted from the load test results using an appropriate criterion. Nine representative uplift resistance interpretation criteria were used to define the "interpreted failure load" for each of the load tests, and all of these interpreted uplift resistances were normalized by the failure threshold, $T_{L2}$, obtained using the $L_1-L_2$ method. These load test data were compared statistically and graphically. For the straight-sided and belled shafts, the normalized uplift load-displacement curves were respectively established by the plots that related the mean interpreted uplift resistance ratio against the mean displacement at the corresponding interpreted criteria, and the comparisons of the normalized load-displacement curves were made. Specific recommendations for the designs of uplift belled and straight-sided shafts in the loess were given, in terms of both capacity and displacement.

Numerical analysis of an innovative expanding pile under static and dynamic loading

  • Abdullah Cheraghi;Amir K. Ghorbani-Tanha
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.453-462
    • /
    • 2023
  • Designing pile foundations subjected to the uplift forces such as buildings, oil platforms, and anchors is becoming increasingly concerned. In this paper, the conceptual design of a new type of driven piles called expanding pile is presented and assessed. Some grooves have been created in the shaft of the novel pile, and some moveable arms have been designed at the pile tip. At first, static analyses using the finite element method were performed to evaluate the effectiveness of the innovative pile on the axial bearing capacity. Then its effect on seismic behavior of moment frame is considered. Results show that the expanding arms were provided an ideal anchorage system because of the soil's noticeable locking-up effect increasing uplift bearing capacity. For example at the end of the static tensile loading procedure, displacement decrement up to 55 percent is observed. In addition, comparing the uplift bearing capacity of the usual and new pile with different lengths in sand and clay layers shows noticeable effect and sharp increase up to about two times especially in longer piles. Besides, a sensible reduction in the seismic response and the stresses in the beam-column connection between 23-36 percent are achieved that ensures better seismic behavior of the structures.

Plate Anchor의 인발거동에 관한 모형실험 (A Model Test on Uplift Behavior of Plate Anchor)

  • 김서성;이상덕;구자갑;전몽각;유건선
    • 대한토목학회논문집
    • /
    • 제14권5호
    • /
    • pp.1219-1227
    • /
    • 1994
  • 앵커의 극한인발력을 결정하기 위해서는 인발에 의한 지반의 파괴기구를 정확하게 알아야 한다. 그러나 앵커의 인발저항에 영향을 끼치는 요소 중에서 묻힘비에 따른 파괴기구의 변화에 대한 기존의 연구가 미흡한 실정이다. 본 연구에서는 판앵커의 수직인발시 묻힘비에 따른 파괴가구의 변화를 보다 명확히 관찰하고, 지존의 극한인발력 산정식의 적용성을 판단하기 위하여 탄소봉으로 조성된 평면변행률상태의 지반에서 모형실험을 실시하였다. 그 결과로서, 얕은앵커상태와 깊은앵커상태일 때의 지반의 파괴특성을 명확히 구분할 수 있었으며, 깊은앵커의 극한인발력의 산정에 앞서 얕은앵커의 해석이 선행되어야 한다는 것이 증명되었다.

  • PDF