• Title/Summary/Keyword: upland rice

Search Result 259, Processing Time 0.023 seconds

Investment beneficial analysis of rice alternative plants

  • Yi, Hyang-Mi;Goh, Jong-Tae;Lee, Jong-In
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.2
    • /
    • pp.169-176
    • /
    • 2013
  • The price and revenue of rice are expected to decrease due to increasing rice imports, decreasing consumption and the discontinuance of the government's rice procurement. This degenerating profitability is leading to a rise in the cultivation of upland-crops such as beans, fodder crops and fruits in paddy fields. However, there is a lack of research on the selection of rice substitute crops which are adaptable to the relevant region through profitability analysis. This research, therefore, analyzed investment profitability of rice substitute crops for Cheorwon-gun area in Kangwon province. The study applied net present value (NPV) and internal rate of return (IRR), which fit for mutually exclusive investments that make one selection to the exclusion of other crops. Target crops are green house plants in Cheorwon-gun area. Financial analysis showed paprika and cucumber have investment feasibility for automated vinyl greenhouses and conventional plastic greenhouses respectively.

HSPF and SWAT Modelling for Identifying Runoff Reduction Effect of Nonpoint Source Pollution by Rice Straw Mulching on Upland Crops (볏짚 피복에 의한 밭 비점오염원 유출저감효과 분석을 위한 HSPF와 SWAT 모델링)

  • Jung, Chung Gil;Ahn, So Ra;Kim, Seong Joon;Yang, Hee Jeong;Lee, Hyung Jin;Park, Geun Ae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.2
    • /
    • pp.47-57
    • /
    • 2013
  • This study is to assess the reduction of non-point source pollution loads for rice straw mulching of upland crop cultivation at a watershed scale. For Byulmi-cheon watershed (1.21 $km^2$) located in the upstream of Gyeongan-cheon, the HSPF (Hydrological Simulation Program-Fortran) and SWAT (Soil and Water Assesment Tool), physically based distributed hydrological models were applied. Before evaluation, the model was calibrated and validated using 9 rainfall events. The Nash-Sutcliffe model efficiency (NSE) for streamflow using the HSPF was 0.62~0.76 and the determination coefficient ($R^2$) for water quality (sediment, total nitrogen T-N, and total phosphorus T-P) were 0.72, 0.62, and 0.63 respectively. The NSE for streamflow using the SWAT were 0.43~0.81 and the $R^2$ for water quality (sediment, T-N, and T-P) were 0.54, 0.87, and 0.64 respectively. From the field experiment of 16 rainfall events, the rice straw cover condition reduced surface runoff average 10.0 % compared to normal surface condition. By handling infiltration capacity (INFILT) in HSPF model, the value of 16.0 mm/hr was found to reduce about 10.0 % reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 87.2, 28.5, and 85.1 % respectively. By handling soil hydraulic conductivity (SOL_K) in SWAT model, the value of 111.2 mm/hr was found to reduce about 10.0 point reduction of surface runoff. For this condition, the reduction effect of sediment, T-N, and T-P loads were 80.0, 83.2, and 78.7 % respectively. The rice straw surface covering was effective for removing surface runoff dependent loads such as sediment and T-P.

Characterization of a New High-lysine Mutant in Barley (Hordeum vulgare L.)

  • Kim, Hong-Sik;Kim, Dea-Wook;Kim, Sun-Lim;Baek, Seong-Bum;Park, Hyoung-Ho;Hwang, Jong-Jin;Kim, Si-Ju
    • Korean Journal of Breeding Science
    • /
    • v.43 no.5
    • /
    • pp.375-382
    • /
    • 2011
  • A chemical, MNU-induced hulless barley mutant line designated as 'Mutant 98 (M98)' was developed from a Korean hulless waxy barley cultivar, 'Chalssalbori'. The objective of the study was to determine the genetic basis of 'M98' and the possibility of using 'M98' as breeding parent to improve lysine level. Compared to 'Chalssalbori', 'M98' had large embryo and higher lysine content in both the embryo and endosperm. Significantly different lysine content in 'M98' and the other high-lysine barley mutant stocks was observed for two years. However, the genotype by year interaction was not significant. 'M98' was higher than the other high-lysine barley mutant stocks in the percentage of lysine of total amino acid composition (0.75%). The trait of shrunken endosperm of 'M98', which was typical in the high-lysine mutants, was inherited by a single recessive gene. Based on seed morphology and lysine content of $F_1$ seeds, 'M98' had a genetically different gene from the other high-lysine mutants for shrunken endosperm. Segregation of $F_2$ for plump/shrunken endosperm did not fit the expected ratio of Mendelian inheritance except for only one cross combination (GSHO1784 (lys1)/M98). The amino acid analysis of $F_5$ and $F_6$ progenies from the cross between 'M98' and 'Chalssalbori' revealed that the attempt to increase the range of lysine content of plump lines did not go beyond the limit of the average high-lysine barley germplasm.

Studies on the Improvement of the Cropping System (I) (작부체계(作付體系) 개선(改善)에 관(關)한 조사연구(調査硏究)(I))

  • Choi, Chang Yeol
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.61-73
    • /
    • 1983
  • This study was conducted to obtain fundamental informations on the improvement of cropping system to increase in land utilization rate and crop production. In order to group the characteristics of areas, Chungnam province was classified into 4 classes: Suburb (Daedeog Gun, Cheonwon Gun), Plain (Nonsan Gun, Dangjin Gun) Coastal (Seosan Gun, Boryeong Gun) and Hilly region (Gongju Gun, Cheongyang Gun). 100 farm households were sampled from each region, and cropping system and utilization state of paddy and upland in 1982 were surveyed. The results obtained were summarized as follows: 1. Average utilization rate of upland was 161.9 % The utilization rate of upland at plain was highest (188.9 %), and that at suburb showed lowest value (152.0%). 2. Number of crops cultivated at upland was 32 kinds. Among the rate of planting area of each crop. soybean showed highest rate of 18.8%, barley 15.4%, red-pepper 13.1% and chinese' cabbage 10.1% respectively, but the red pepper showed highest rate of planting area at suburb, the barley at hilly region and the soybean at plain and coastal region. 3. Average utilization rate of paddy was 115.6% and the utilization rate of paddy at suburb showed the highest value (140.0%) and that at coastal region the lowest value (108.2%). 4. 12 kinds of crops were cultivated at paddy before or after rice cultivation. Among the crops cultivated at paddy before or after rice cultivation, barley showed the highest area rate (5.0%) of cultivation and strawberry the next but the strawberry showed the highest area rate of cultivation at suburb and barley at other regions. 5. The cropping systems at upland were divided into single cropping and double cropping. Types of double cropping at upland were classified into 38 types by the combinations of crops. Among the types of double cropping, the rate of cultivation area of soybean after barley combination was 35.0%, but at suburb the rate of this type of cropping system was low and the double cropping of vegetable combinations showed high rate. 6. Types of double cropping at paddy were classified into 6 types. As a whole, double cropping of barley after rice combination showed highest rate of cultivation area (42.8%) among crop combinations but at suburb, the area rate of this type cropping was low and cultivation of fruit vegetable after rice showed highest rate. The area rate of post - cropping to rice was 76.3% of whole double cropping area at paddy and significantly higher than the rate of precropping to rice. 7. Some kinds of crop combinations were consisted of same family or closely related crops and the characteristics of the crop rotation between those crops are almost same. The area cultivated those unreasonable crop combinations were 19.09 ha. 8. At upland, planting area of the cereal crops, vegetale crops and industrial crops crops and industrial crops was 88.92ha, 93.70ha and 21.80ha respectively. The Planting area of cereal crops was significantly less than that of vegetable crops. 9. Most of all the research reports on the cropping system from 1910 to 1980 were about the post cropping after rice harvest. The objectives of researches could be classified into 14 kinds and the important objectives of researches were the planting time, the amounting of manuring, the quantity of seeding, the transplanting time, the ridging method, the sowing method and the variety test.

  • PDF

Managing Soil Organic Matter and Salinity by Crop Cultivation in Saemangeum Reclaimed Tidal Land

  • Bae, Hui Su;Jang, Hyeonsoo;Hwang, Jae Bok;Park, Tae Seon;Lee, Kyo Suk;Lee, Dong Sung;Chung, Doug Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.50-60
    • /
    • 2018
  • This study was to evaluate the effect of organic amendments incorporation on soil properties and plant growth under two different soil salinity levels and various cultivated crops at Saemangeum reclaimed tidal land for three years from 2012 to 2014. The soil texture of the experimental site was sandy loam. Four different crops, sesbania (Sesbania grandiflora), sorghum-sudangrass hybrid (Sorghum bicolor-Sorghum sudanense), rice (Oryza sativa L.) and barley (Hordeum vulgare) were cultivated at low (< $1dS\;m^{-1}$) and high (> $4dS\;m^{-1}$) soil salinity levels. The soil salinity was significantly lowered at the rice cultivation site compared to continuous upland crops cultivation site in high soil salinity level. But the soil salinity was increased as cultivating sesbania coutinuously in low soil salinity level. The soil organic matter content was increased with the incorporation of straw at the continuous site of rice and barley, and the average of soil organic matter was increased by $0.9g\;kg^{-1}$ per year which was effective in soil aggregate formation. The highest biomass yield plot was found in barley (high salinity level) and sesbania (low salinity level) cultivation site, respectively. Our research indicates that rice cultivation in paddy field with high salinity level was effective in lowering soil salinity and sesbania cultivation was useful to biomass production at upland with low salinity. In conclusion, soil salinity and organic matter content should be considered for multiple land use in newly reclaimed tidal land.

Disease Dispersal Gradients of Rice Blast from a Point Source (점접종원으로부터 벼 도열병 확산의 경사)

  • Kim Choong Hoe
    • Korean Journal Plant Pathology
    • /
    • v.3 no.2
    • /
    • pp.131-136
    • /
    • 1987
  • Rates of lesion development over time and disease gradients over distance for blast disease on the two rice varieties, Brazos and M-20 1 were significantly affected by two different cultural conditions, upland and flooded conditions. Flooding rice field plots lowered the rates of lesion increase and flattened the disease gradients for both varieties. Despite absence of statistically significant differences in the rate of lesion increase between four sampled distances from infection focus, rate of lesion development tended to be slightly greater as distance from the infection focus increases. Rate of lesion increase was greater with more susceptible variety M-201 than with Brazos. Disease gradient was steeper for M-201 than for Brazos. As blast disease progressed, disease gradients became flattened regardless of variety due to the infections originated from secondary foci. Between two empirical disease gradient models examined, Kiyosawa & Shiyomi model was fitted better over Gregory model. Rates of blast isopath movement under upland conditions were calculated as approximately 0.2m/day and 0.4 m/day for Brazos and M-201, respectively. The results in this study suggest that differences in varietal resistance to blast could be detected by measuring disease gradient as efficiently as by measuring infection rate.

  • PDF

Screening Plant Growth-Promoting Bacteria with Antimicrobial Properties for Upland Rice

  • Khammool Khamsuk;Bernard Dell;Wasu Pathom-aree;Wanwarang Pathaichindachote;Nungruthai Suphrom;Nareeluk Nakaew;Juangjun Jumpathong
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1029-1039
    • /
    • 2024
  • This study explores beneficial bacteria isolated from the roots and rhizosphere soil of Khao Rai Leum Pua Phetchabun rice plants. A total of 315 bacterial isolates (KK001 to KK315) were obtained. Plant growth-promoting traits (phosphate solubilization and indole-3-acetic acid (IAA) production), and antimicrobial activity against three rice pathogens (Curvularia lunata NUF001, Bipolaris oryzae 2464, and Xanthomonas oryzae pv. oryzae) were assessed. KK074 was the most prolific in IAA production, generating 362.6 ± 28.0 ㎍/ml, and KK007 excelled in tricalcium phosphate solubilization, achieving 714.2 ± 12.1 ㎍/ml. In antimicrobial assays using the dual culture method, KK024 and KK281 exhibited strong inhibitory activity against C. lunata, and KK269 was particularly effective against B. oryzae. In the evaluation of antimicrobial metabolite production, KK281 and KK288 exhibited strong antifungal activities in cell-free supernatants. Given the superior performance of KK281, taxonomically identified as Bacillus sp. KK281, it was investigated further. Lipopeptide extracts from KK281 had significant antimicrobial activity against C. lunata and a minimum inhibitory concentration (MIC) of 3.1 mg/ml against X. oryzae pv. oryzae. LC-ESI-MS/MS analysis revealed the presence of surfactin in the lipopeptide extract. The crude extract was non-cytotoxic to the L-929 cell line at tested concentrations. In conclusion, the in vitro plant growth-promoting and disease-controlling attributes of Bacillus sp. KK281 make it a strong candidate for field evaluation to boost plant growth and manage disease in upland rice.

Revised Soil Survey of Yangju City in Gyunggido

  • Hyun, Byung-Keun;Sonn, Yeon-Kyu;Kim, Keun-Tae;Cho, Hyun-Jun;Jung, Sug-Jae;Choi, Jung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.2
    • /
    • pp.81-92
    • /
    • 2017
  • Recently, agricultural lands have decreased sharply, which was caused by huge housing site, urbanization, land consolidation, and road construction etc. In particular, Yangju city near Seoul city has the most severe land use change in Korea. Therefore, we analyzed changes of land use, soil properties, and soil information in order to provide the basic soil information and soil management practices in this city. The area of crop cultivated land in Korea (2015) reduced by 12,090 ha compared to ones from the previous year (2014). The paddy field decreased by 25,421 ha but, upland field increased by 13,331 ha. One of the reasons for the reduction of the paddy field was converting paddy field to upland (20,916 ha) > others (3,056) > building (2,571) > public facilities (847) > idle land (217). But, reasons for increase of upland field were switching paddy to upland (20,916 ha) > land developed (634). The main reason of converting paddy field to upland was changing from rice to more profitable speciality crops or pulses. The cropland area (paddy fields, upland, orchard) of Yangju city reduced by 1,412 ha (2015/2014). The ratio of cropland area in each city reduced by 22.9% dramatically compared 2015 to 1999. The paddy fields located in alluvial plains in Yangju city were changed into upland or green house. The drainage classes of soil have been deteriorated because the flows of water were intercepted by road construction and other disturbance to water flows. In particular, paddy fields have been changed to not only upland, orchard, greenhouse cultivation but also to fallow and soil dressing on paddy in Yangju city. To analyze result of soil survey of Yangju city, 858 soil codes (soil phases) were used and the area was 105.17ha. The number of soil series increased from 60 to 65, and that of soil phase increased from 105 to 124. The largest increased area was Noegog soil series. 125.7ha of Neogog soil series was incorporated from the existing Sachon, Yecheon and Eungog soil series. The soil suitability class of paddy field in Ogjung huge housing site of Yangju city was the 4th grade for 32.6% of the area. The soil suitability classes of upland were 2nd and 3rd grade for 72.4% of the area. Farm land with high quality should be conserved by related law.

Comparison of Soil Testing Methods for Plant Available Phosphate

  • Kim, Myung Sook;Kwak, Han Kang;Kim, Yoo Hak;Kang, Seong Soo;Gong, Myung Suk;Zhang, Yong Seon;Yoon, Hong Bae;Lee, Chang Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.153-162
    • /
    • 2013
  • Most test methods for plant available soil phosphate are based on the extraction with a chemical solution. The objective of this study is to evaluate available phosphate of various tests at different soil phosphate levels. Two experiments were conducted as follows: i) Extracting capacities of soil phosphate tests - Mehlich III, Mehlich II, Bray I, Olsen, Kelowna, and Modified Lancaster(Mod. Lancaster) - were compared with that of Lancaster test for the soils collected from 32 paddy and 27 upland fields with various soil chemical properties. ii) Field trials on comparing to phosphate uptake by plant were accomplished by cultivating rice and corn plants in the pots filled with the soils. Available phosphate of Lancaster test was significantly correlated with those of Mehlich III, Mehlich II, Bray I, Olsen, Kelowna, and Mod. Lancaster. In upland soils, available phosphates of all the tests were curvilinearly regressed with phosphate uptake by corn. The determination coefficients ($R^2$) of the regression equation between available phosphate in soils and phosphate uptake by plants were ranged from 0.861 (Mehlich III) to 0.741 (Olsen). In paddy soils, the available phosphate measured by Mehlich III and Lancaster was significantly correlated with phosphate uptake by rice. In conclusion, Lancaster and Mehlich III tests could be used for predicting available phosphate in upland and paddy soils.

The Importance and Multifunctions of Korean Paddy Fields

  • Cho Young-Son;Lee Byeong-Jin;Choe Zhin-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.2
    • /
    • pp.179-185
    • /
    • 2006
  • The Ministry of Agriculture and Forestry announced in 2001 that the overall amount of paddy land set aside for rice will be cut down by 12% by 2005, decreasing from 1.08 million to 953,000 hectares. When evaluating the value of paddy rice systems, the multi-function of paddy systems in the monsoon climate is vital importance. The main functions of paddy rice systems are to conserve biodiversity and maintain sustainability. Some crucial environmental benefits of the paddy rice systems include: flood prevention, recharge of water resources, water purification, soil erosion and landslide prevention, soil purification, landscape preservation and air purification. The paddy rice systems in Korea, which are more diverse than upland crop systems, are known to be composed of 14 orders, 36 families and 134 species. The sustain ability of paddy rice production systems can never be overestimated. Rice is part of the culture and even the heart of spiritual life in the area under the monsoon climate. Therefore paddy rice systems should be preserved with the highest priority being the enhancement of the systems' multi-function. As an outlook to future research, the need of joint and interdisciplinary research projects between economists and natural scientists at inland as well as international levels were emphasized in establishing the development of counter-measure logic through actual proofed analysis.