• Title/Summary/Keyword: upland condition

Search Result 187, Processing Time 0.032 seconds

Sodicity Difference between Paddy and Upland Soil as Affected by Food Waste Compost Application (음식물쓰레기 퇴비 시용에 따른 논 토양과 밭 토양의 Na 집적 차이)

  • Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.2
    • /
    • pp.92-99
    • /
    • 2000
  • To compare the effect of food waste compost(FWC) application on the sodicity of paddy and upland soil, laboratory experiment was conducted. Six kinds of FWC made of various mixing ratio of food waste and pig slurry as raw material were applied to paddy soil under submerged condition and to upland soil in field water capacity, and were kept at $25^{\circ}C$ under laboratory incubation. The higher the mixing ratio of food waste on making FWC, the higher the FWC showed Na content and EC. Mineralized ratio of cations in FWC during incubation showed no difference between paddy and upland soil. It was high in the order of Na>K>Mg>Ca as 99, 94, 71, and 71%, respectively. NaCl contents of FWC applied to soils against SAR and ESP were fitted well to first linear regression with extremely high significance($R^2=0.99$). Increasing rate of SAR and ESP was higher in upland soil than paddy soil by 2.3 times. The difference was considered to be caused by dilution effect which was exerted by the application of more soil to water ratio to paddy soil than to upland soil on SAR analysis in consideration of cultivating condition. The calculated values of $([Ca^{2+}+Mg^{2+}]/2)^{1/2}$ used as a denominator on SAR calculation showed a little difference among FWC treatments by 2.1~2.4, while [$Na^+$] used as a numerator showed much variance by 3.1~9.5. Therefore, as a parameter for the assessment of FWC quality affecting soil sodicity, the use of only Na content in FWC was proposed without regarding Ca and Mg contents. Soil Ex. Na contents showed extremely high correlation($R^2=0.99$) with ESP. Moreover, because the former can be more easily determined than the latter, soil Ex. Na content was proposed as a new sodicity index.

  • PDF

Behavior of Synthetic Pyrethroid Insecticide Bifenthrin in Soil Environment I) Degradation Pattern of Bifenthrin and Cyhalothrin in Soils and Aqueous Media (합성 Pyrethroid 계 살충제인 Bifenthrin의 토양환경중 동태 제1보. Bifenthrin 및 Cyhalothrin의 토양 및 수용액중에서의 분해양상)

  • Kim, Jang-Eok;Choi, Tae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.11 no.2
    • /
    • pp.116-124
    • /
    • 1992
  • This study was conducted to elucidate degradation pattern of two synthetic pyrethroid insecticides, bifenthrin having 2-methylbiphenyl group and cyhalothrin having ${\alpha}$-cyano benzyl ester group in theirs alcohol moiety, in two soils and aqueous media under laboratory conditions. The half-life of bifenthrin was 85.1 days and 12,4 days in Chilgok and Bokhyen soil of aerobic upland condition, respectively, and that of cyhalothrin was 54.6 days and 32.2 days. Bifenthrin and cyhalothrin were degraded very slowly under anaerobic flooded condition and sterilized. Their degradation seemed to be mainly mediated by aerobic microorganisms in soil. Bifenthrin and cyhalothrin were degraded more rapidly in Bokhyen soil with rich organic matter than Chilgok soil. Cyhalothrin was degraded 30 days faster than bifenthrin under aerobic upland condition of two soils. Cyhalothrin was degraded more than bifenthrin in alkaline solution of pH 10, but cyhalothrin and bifenthrin were degraded very slowly in acidic solution of pH 2 and 6.

  • PDF

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil

  • Shin, Jae-Hoon;Lee, Sang-Min;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.751-760
    • /
    • 2015
  • Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.

Investigation of Relationships between Soil Physico-chemical Properties and Topography in Jeonbuk Upland Fields (전북지역 밭 토양의 지형별 물리화학적 특성)

  • Ahn, Byung-Koo;Lee, Jae-Hyoung;Kim, Kab-Cheol;Choi, Dong-Chil;Lee, Jin-Ho;Han, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.268-274
    • /
    • 2010
  • The properties of upland soils are much more dependent upon topography than those of paddy soils, and they give us very useful information to manage the upland fields. Therefore, we investigated the selected physical and chemical properties of upland soils at 84 and 150 topographic sampling sites, respectively. The topographic sites included 34.7% of local valley and fans, 18.7% of hilly and mountains, 20.0% of mountain foot slopes, 14.0% of alluvial plains, 8.0% of diluvium, and 4.6% of fluvio-marine deposits. Based on the investigation, soil textures in Jeonbuk upland fields were mostly sandy loam, sandy clay loam, clay loam, and clay soils, especially sandy clay loam soils were evenly distributed in all of the topographic sites. Soil slopes in the sites ranged from 0 to 15%, which showed an optimal condition for farm land. Soil bulk density and compaction values were from 1.19 to 1.24 g $cm^{-3}$ and from 12.1 to 13.9 mm, respectively. As comparing with the optimal conditions of soil chemical properties for upland soils proposed by National Institute of Agricultural Science and Technology, Korea, 37%, 42.7%, 93.0% of the sites were within optimum levels with soil pH, content of soil organic matter, and electrical conductivity, respectively. However, 64.0%, 47.3%, 48.7%, and 42.7% of the upland soils contained excess levels of exchangeable K, Ca, and Mg, and available phosphorus, respectively. In addition, the contents of heavy metals, As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, in the Jeonbuk upland soils were much less than threshold levels.

Effect of the Alternation of Lowland-Upland Field and the Cropping Pattern on Weed Population (논밭 윤환재배시(輪換栽培時) 작부유형별(作付類型別) 잡초발생(雜草發生) 양상(樣相))

  • Yoo, C.H.;Yang, C.H.;Kim, J.G.;Rhee, G.S.;Han, S.S.
    • Korean Journal of Weed Science
    • /
    • v.15 no.4
    • /
    • pp.298-304
    • /
    • 1995
  • This study was carried out to make the most of them as the fundamental data for reasonable weed control when population of weeds was observed in the alternated fields of lowland and upland. The annual and the perennial paddy weeds in the continuous paddy rice field remarkably decreased when compared to that in the alternated field of paddy rice and soybean. The longer was the duration of upland field condition, the less was the population of lowland weeds and the more was the population of upland weeds. Biennial weeds in the contiuous paddy rice field were less than that in the rotated field of paddy rice and soybean, and this tendency was clear in Alopecurus aequalis Sobol. In the continuous cropping of paddy rice, population of biennial weeds in the culverted field was higher than that in the unculverted one, but in the continuous cropping of soybean this tendency was vice versa.

  • PDF

Effect of Subsoiling on Silage Maize Yield in Paddy Field Converted to Upland Condition (밭전환 논에서 심토파쇄에 따른 사료용옥수수의 수량성 변화)

  • Seo, Jong-Ho;Back, Sung-Beom;Kwon, Young-Up;Kim, Chung-Guk;Jung, Kwang-Ho;Jung, Gun-Ho;Lee, Jae-Eun;Son, Beom-Young;Kim, Si-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.4
    • /
    • pp.430-435
    • /
    • 2012
  • Low silage corn yield due to bad soil physical properties in the paddy field converted to upland condition is the chief obstacles to expanding the area for silage maize production. The effect of subsoiling (subsoiling to depth 40 cm) on soil physical properties and silage corn yield were investigated in the first year of paddy field converted to upland condition in 2010 and 2011, respectively. Soil compaction was loosened much particularly at depth 25~35cm as much as 1~1.5 MPa and soil bulk density and porosity at depth 15~30 cm are improved by subsoiling. Maize growth was increased by subsoiling, particularly in kernel number per ear which increased ear weight. Total digestible nutrients (TDN) yield of silage maize was increased as much as 19 and 39% in 2010 and 2011, respectively showing that yield increase according to subsoiling was higher when maize growth was prohibited much by excess-moisture injury due to heavy rain in 2011.

Use of Industrial Wastes as Sources of Organic Fertilizer III. Effect of Lime Added Sludge on Upland Crop of Corn (산업폐기물(産業廢棄物)의 비료화(肥料化)에 관(關)한 연구(硏究) III. 전작물(田作物)에 대(對)한 석탄첨가(石灰添加) 맥주오염(麥酒汚泥)의 비효시험)

  • Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.1
    • /
    • pp.51-54
    • /
    • 1984
  • Fermentation waste from beer production was applied to a newly developed upland soil to evaluate the effect of lime added sludge on corn growth. The mineralization of lime added sludge was faster than that of raw sludge without lime treatment in the upland condition. It was accelerated by low C/N ratio and high lime content in the lime added sludge. The plant growth and yields of corn increased as the sludge application rate increased and so was nitrogen and organic matter contents in soil. Ammonium volatilization is considered to be high in the lime added sludge and thus the raw sludge is more promising as an organic sources.

  • PDF

Development of the Estimation System for Agricultural Water Demand (농업용수 수요량 산정 시스템 개발)

  • 이광야;김선주
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.1
    • /
    • pp.53-65
    • /
    • 2001
  • To estimate agricultural water demand, many factors such as weather, crops, soil, cultivation method, crop coefficient and cultivation area, etc. must be considered. But it is not easy to estimate water demand in consideration of these factors, which are variable according to growth stage and regional environment. This study provides estimation system for agricultural water demand(ESAD) in order to estimate water demand easily and accurately, and arranges all factors needed for water demand estimation. This study identifies the application of estimation system for agricultural water demand with the data observed in the other studies, and analyzes nationwide agricultural water demand. The results are as follows. 1) The practice of different rice cultivation in the paddy field resulted in different water demands. Water depth and infiltration ratio in paddy are the most important factors to estimate water demand. The water depths in paddy simulated by ESAD is very similar to the observed ones. 2) Water demand of upland crops varies with the crops, soil, etc.. Effective rainfall estimated by daily routing of soil moisture varies according to the crops, soil, and effective soil zone(root depth). As crop root become grown, effective rainfall and an amount of irrigation water has been increased. 3) The current unit water demand of upland crops applied as 500mm or 550mm to estimate water demand does not reflect the differences caused by the crops, regional surrounding, weather condition, etc. Results from ESAD for the estimation of water demand of upland crops show that ESAD can simulate the actual field conditions reasonably because it simulates the actual irrigation practices with the daily routing of soil moisture.

  • PDF

Applicability of Soil Washing with Neutral Phosphate for Remediation of Arsenic-contaminated Soil at the Former Janghang Smelter Site ((구)장항제련소 주변 부지 매입구역 비소 오염토양에 대한 중성 인산염 토양세척법의 적용가능성 평가)

  • Im, Jinwoo;Kim, Young-Jin;Yang, Kyung;Nam, Kyoungphile
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.45-51
    • /
    • 2014
  • In accordance with the view on remediated soil as a resource, this study assessed the applicability of soil washing with the neutral phosphate for remediation of arsenic (As)-contaminated soil. Three soil samples of different land uses (i.e., rice paddy, upland field and forest land) were collected from the study site, and the aqua regia-extractable As concentrations were 59.2, 30.8 and 53.1 mg/kg, respectively. Among the neutral phosphate reagents, ammonium phosphate showed the highest As washing efficiency. The optimized washing condition was 2-hr washing with 0.5M ammonium phosphate solution (pH 6) and soil to liquid ratio of 1 : 5. The extraction efficiencies of As did not guarantee the residual soil As concentrations to satisfy the Korea soil regulatory level (i.e., Worrisome level) in the three soil samples. To enhance washing efficiency, the As-contaminated soil was submerged in washing solution (1 : 1, w/v) for 24 hr and 1-hr washing with 0.5M ammonium phosphate solution was tested. As extraction efficiencies of 36.1 (rice paddy), 21.4 (upland field) and 26.4% (forest land) were attained, which satisfied the Worrisome level for Region 1 (25 mg/kg of As) in rice paddy, but not in upland field and forest land.

Three-dimensional groundwater water flow in an upland area-groundwater flow analysis by steady state three-dimensional model (홍적지대에 있어서의 지하수의 3차원적 유동-3차원 정상류모델에 의한 지하수 유동해석)

  • 배상근
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1987.07a
    • /
    • pp.113-122
    • /
    • 1987
  • A numerical simulation technique of three-dimensional finite difference model is developed to study the groundwater flow system in Dcjima, an upland area which faces Kasumigaura Lake. For general perspectives of the groundwater flow system, a steady state three-dimentional model is simulated. For the sedimentary mud formations which are found in the representative formation, three situations of hydraulic conductivity are considered, representing an isotropic condition and situations where the horizontal permeability is equal to 10 times and 100times of the vertical one. The finite difference grid used in the simulation has 60x50x30=90,000 nodes. A converged solution with a tolerance of 0.001 meter of hydraulic head is set. Having determined the flow net by using a steady state three-dimensional model. the results for the three cases of hydraulic conductivity are compared with the results of tracer methods (Bae and Kayane 1987) With the aid of four representative vertical cross-sections, groundwater flow systems in the study area are assumed. Water balances for the three cases indicate very good agreement between total recharge and discharge in each case Analyses of groundwater flow system based on the tritium concentrations and water quality measurements (Bae and Kayane 1987) are confirmed by the numerical simulation and the results obtained by these two methods appeared to be in close agreement.

  • PDF