• 제목/요약/키워드: upflow sludge blanket process

검색결과 32건 처리시간 0.025초

매립지 침출수 처리의 고율 혐기성 처리 (High-rate Anaerobic Treatment of Landfill Leachate)

  • 이채영;신항식
    • 유기물자원화
    • /
    • 제15권2호
    • /
    • pp.136-146
    • /
    • 2007
  • 상향류 혐기성 블랭킷 반응조를 이용한 매립지 침출수 처리시 입상슬러지 첨가 유무에 상관없이 성공적인 처리가 가능하였다. 입상슬러지의 첨가는 초기 운전기간를 현저히 단축할 수 있었다. 수리학적 체류시간 1일과 $4-8kgCOD/m^3.d$ 의 유기물 부하율에서 Control 반응조와 Granule 반응조의 COD 제거율은 90% 이상을 유지하였다. 실험기간 동안 입상슬러지 첨가 유무에 상관없이 슬러지 표면과 반응조 벽면에 무기 침전물이 축적되었다. 비메탄 활성도는 미생물의 기질에 대한 적응도와 유기물 부하량이 증가함에 따라 증가하였다. Granule 반응조의 최대 비메탄 활성도의 값은 $0.57gCOD/g{\cdot}VSS{\cdot}.d$로 나타났다. 비록 본 연구에서는 과도한 무기물 축적으로 인한 비메탄 활성도의 저감은 발생하지 않았으나 무기물의 제거를 위하여 유입수의 전처리 공정이 필요할 것으로 판단된다.

  • PDF

UASB를 이용한 음폐수의 Biogas 자원화 (Biogas Resource from Foodwaste Leachate Using UASB(Upflow Anaerobic Sludge Blanket))

  • 민부기;이창현;김재용
    • 공업화학
    • /
    • 제23권1호
    • /
    • pp.28-34
    • /
    • 2012
  • 본 연구에서는 UASB 반응조를 이용하여 음폐수 탈리액을 원료로 하여 중온소화($35{\pm}0.5^{\circ}C$)와 고온소화($55{\pm}0.5^{\circ}C$)법을 통한 운전을 실시하였다. 20일 동안은 중온소화로 운전을 하면서 5일 간격으로 유출수 재순환 비를 단계적으로 변화시켰다. 고온소화 역시 중온소화와 마찬가지 조건으로 운전을 실시하였다. 실험결과 중온소화 시 유기물제거율은 90% 이상, 메탄수율은 약 66~70%로 나타났다. 고온소화 시 유기물제거율은 80% 이상, 메탄수율은 약 62~68%로 나타났다. 또한, 유출수 반송을 3Q 이상으로 반송하여 운전할 경우 경제적이며 안정적인 운전을 할 수 있었다.

상향류식 혐기성 입상슬러지 공법의 유기폐수 처리 효율에 미치는 온도의 영향 (Temperature Effect of the UASB Process for Treatment of Organic Waste)

  • 박철휘;정태학
    • 상하수도학회지
    • /
    • 제10권4호
    • /
    • pp.45-54
    • /
    • 1996
  • Effects of temperature on the efficiency of the Upflow Anaerobic Sludge Blanket(UASB) process for treatment of wastewater from a starch and related products manufacturing industry were investigated using laboratory scale reactors equipped with two types of Gas-Solid Separator(GSS). Both fresh digested sludge and granular sludge stored nearly for one year at room temperature were good as a seeding material. The reactors seeded with aged granular sludge showed slow start-up, however, lowered activity at the initial period was recovered gradually. The GSS with an inner cylinder was proved to be effective in liquid-solid separation compared to the conventional type. Although the rate of organic removal and gas production per unit volatile suspended solids in the reactor reduced significantly as the temperature varied from 35 to $20^{\circ}C$, possibility of operation at low temperatures was shown as a result of gradual buildup of volatile suspended solids in the bed. Stable operation with a reduced efficiency was possible at a COD loading of $5-8kg/m^3/day$ at a temperature as low as $20^{\circ}C$.

  • PDF

UASB 공정에 의한 고농도 축산폐수 처리시 유기물 제거와 메탄생성에 관한 연구 (A Study on Organics Removal and Methane Production during the Anaerobic Digestion of High-Strength Swine Wastes Using UASB Process)

  • 원철희;김승호;박은영;임재명
    • 산업기술연구
    • /
    • 제22권B호
    • /
    • pp.109-115
    • /
    • 2002
  • This research was performed to investigate the COD removal efficiency and methane production in slurry-typed swine wastes using UASB(upflow anaerobic sludge blanket)reactor. The USAB reactor was operated from 0.8 through 3.3days of HRT in a range of 3 to 15 kg $TCOD/m^3/day$ of volumetric organic loading rate. The removal rate of TCOD was increased with the increase of the HRT. The removal rate of TCOD at an HRT over 2days, became greater than 68% with the methane contents being from 70 to 80%. Methane production rates were increased from 0.27 to $0.36m^3\;CH_4/kg$ CODrem. as HRTs were increased from 0.8 to 3.3days.

  • PDF

Anaerobic Lipid Degradation Through Acidification and Methanization

  • Kim,, I-Jung;Kim, Sang-Hyoun;Shin, Hang-Sik;Jung, Jin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권1호
    • /
    • pp.179-186
    • /
    • 2010
  • In biological wastewater treatment, high lipid concentrations can inhibit the activity of microorganisms critical to the treatment process and cause undesirable biomass flotation. To reduce the inhibitory effects of high lipid concentrations, a two-phase anaerobic system, consisting of an anaerobic sequencing batch reactor (ASBR) and an upflow anaerobic sludge blanket (UASB) reactor in series, was applied to synthetic dairy wastewater treatment. During 153 days of operation, the two-phase system showed stable performance in lipid degradation. In the ASBR, a 13% lipid removal efficiency and 10% double-bond removal efficiency were maintained. In the UASB, the chemical oxygen demand (COD), lipid, and volatile fatty acid (VFA) removal efficiencies were greater than 80%, 70%, and 95%, respectively, up to an organic loading rate of 6.5 g COD/l/day. No serious operational problems, such as significant scum formation or sludge washout, were observed. Protein degradation was found to occur prior to degradation during acidogenesis.

Developments and future potentials of anaerobic membrane bioreactors (AnMBRs)

  • Visvanathan, Chettiyappan;Abeynayaka, Amila
    • Membrane and Water Treatment
    • /
    • 제3권1호
    • /
    • pp.1-23
    • /
    • 2012
  • The coupling of anaerobic biological process and membrane separation could provide excellent suspended solids removal and better biomass retention for wastewater treatment. This coupling improves the biological treatment process while allowing for the recovery of energy through biogas. This review gives a basic description of the anaerobic wastewater treatment process, summarizes the state of the art of anaerobic membrane bioreactors (AnMBRs), and describes the current research trends and needs for the development of AnMBRs. The research interest on AnMBR has grown over the conventional anaerobic processes such as upflow anaerobic sludge blanket (UASB). Studies on AnMBRs have developed different reactor configurations to enhance performances. The AnMBR performances have achieved comparable status to other high rate anaerobic reactors. AnMBR is highly suitable for application with thermophilic anaerobic process to enhance performances. Studies indicate that the applications of AnMBR are not only limited to the high strength industrial wastewater treatment, but also for the municipal wastewater treatment. In recent years, there is a significant progress in the membrane fouling studies, which is a major concern in AnMBR application.

UASB를 적용한 이상 혐기공정 granule에 의한 양돈폐수의 바이오가스 생성과 생분해 특성 평가 (A Characteristics of Biogas Recovery and Biodegradability of Piggery Wastewater Using Granule of Two-Phase Anaerobic Process with UASB)

  • 오성모;배윤선;박철휘
    • 상하수도학회지
    • /
    • 제21권3호
    • /
    • pp.315-322
    • /
    • 2007
  • The purpose of this study was to investigate the biodegradability and performance of organic removal and methane production rate when treating piggery wastewater using a granule of two-phase anaerobic process applied UASB. BMP test was conducted as simple means to monitor relative biodegradability of substrate and to determine methane production of an organic material. The two-phase anaerobic process is consisted of a continuous flow stirred-tank reactor (CFSTR) for the acidification phase and an Upflow Anaerobic Sludge Blanket reactor (UASB) for the methanogenesis. The acidogenic reactor played key roles in reducing the periodically applied shock-loading and in the acidification of the influent organics. A stable maximum biogas production rate was 400mL. The methane contents ranged from 73 to 80% during the experimental period. It is known that most of the removed organic matter was converted to methane gas, and the produced biogas might be high quality for its subsequent use.

UASB 공정에 의한 당밀폐수의 최적처리 방안 (Optimal Treatment of Molasses Wastewater Using UASB Process)

  • 허관용;정의근;정윤진;유상근
    • 상하수도학회지
    • /
    • 제11권2호
    • /
    • pp.112-127
    • /
    • 1997
  • The purpose of this study is to get optimum operating factors of Upflow Anaerobic Sludge Blanket (UASB) reactor by introducing methods that make it to reduce inhibition possible in each process wastewater treatment. The used substrates, concentrated corn starch liquid (CSL) wastewater, modified starch, filtering and decoloring wastewater, ion refining wastewater, and mixed wastewater including modified starch and not including modified starch, are generated from molasses process. The seeding sludge is the digested sludge that had been applied to molasses wastewater. Batch test to reduce the inhibition factors that might be existed in each wastewater was examined. Based on the this test, the optimum operating factors according to alkalinity and pH variation was studied through the continuous test using three 5.5 L UASB reactor. The first reactor added $NaHCO_3$ to control alkalinity. The hydraulic retention time (HRT) reduced to 8 hours and the organic loading rate increased gradually. The second reactor changed the pH of influent from 7.0 to 6.0 using NaOH. The third reactor was operated without changes to compare the above two reactors. As the result, the inhibition in concentrated CSL wastewater was removed by adding iron (II). When trace metals were added to mixed wastewater not including modified starch, the digestability by gas production rate increased to more fifty percentage than mixed wastewater that was not adding the trace metals. The reason that the inhibition did not decreased in spite of adding trace metals and nutrients was influenced by high concentration generated during the acid fermentation. The UASB reactors using the mixed wastewater with the most effective performance were operated as 500 mg/L as $CaCO_3$ alkalinity and 6.0 pH at steady state, and at this time, the gas production rates were 283 and 311mL gas/g $COD_{added}$. The COD removal rates were 84.7 and 86.3%, respectively.

  • PDF

슬러리형 돈사폐수의 혐기성 소화시 암모니아 부하의 영향 (Effect of Ammonia Nitrogen Loading Rate on the Anaerobic Digestion of Slurry-typed Swine Wastewater)

  • 원철희;권재혁;임재명
    • 유기물자원화
    • /
    • 제17권1호
    • /
    • pp.49-57
    • /
    • 2009
  • 본 연구에서는 UASB 반응조를 이용한 슬러리형 돈사폐수의 혐기성 소화시 암모니아 부하의 영향을 평가하였다. UASB 반응조는 $0.02{\sim}0.96kg{NH_4}^+-N/m^3/day$ 범위의 NVLR로 운전되었으며, 정상상태에서 biogas내 메탄함량은 73.3~77.9%였다. FA 농도는 메탄생성미생물의 저해 범위까지 증가하였으나, 메탄함량을 고려할 때, FA와 TA로 인한 저해는 발생하지 않았다. NVLR이 증가함에 따라 COD 제거율은 악화되었으며, $0.55kg{NH_4}^+-N/m^3/day$ 이하의 부하에서 COD 제거율을 60% 이상으로 유지할 수 있었다. NVLR이 0.09에서 $0.96kg{NH_4}^+-N/m^3/day$로 증가함에 따라, biogas의 생성량은 3.71에서 9.14L/day로 증가하였으며, COD의 메탄으로 전환율은 0.32에서 $0.20m^3CH_4/kg$으로 감소하였다. FA농도, COD 제거율, 메탄생성률 등을 고려할 때, UASB 반응조는$0.40kg{NH_4}^+-N/m^3/day$ 이하의 NVLR로 운영되어야 한다.

  • PDF

유출수 재순환 및 내부반송이 UASB 반응조 운전효율에 미치는 영향 (Effect of Effluent Recirculation and Internal Return on the Performance of UASB Process)

  • 김진혁;한성국;권오훈;윤경진;김재용
    • 공업화학
    • /
    • 제22권2호
    • /
    • pp.203-208
    • /
    • 2011
  • 런던협약에 의해 2012년부터는 폐기물 해양투기가 전면 금지될 것이다. 따라서 지상에서의 음식폐기물 처리방법의 모색이 시급한 실정이다. 위 문제의 해결방안은 UASB 공법을 이용하여 음폐수로부터 자원화개발을 하는 것이다. 본 연구에서는 유출수의 재순환 및 내부반송이 유기물 제거효율과 바이오 가스 생성에 미치는 영향을 알아보았다. 25일 동안은 내부순환만 실시하였고, 그 후엔 유출수 재순환을 실시하였다. 실험 결과 운전기간동안 유기물 제거효율은 90% 이상으로 나타났고, 메탄수율은 78~80%로 나타났다. 또한, 유출수 반송을 3 Q 이상으로 반송하여 운전할 경우 수산화나트륨(1 N)의 소모가 없었고, 그 결과 경제적이며 안정적인 운전을 할 수 있었다.