• 제목/요약/키워드: up-flow

검색결과 3,718건 처리시간 0.032초

고감성 의류용 Nylon/PP 온감 니트 소재의 물성 (The Physical Property of Nylon/PP Warm-up Knitted Fabric for High Emotional Garment)

  • 김현아;장홍원;허경;김승진;권상준
    • 한국염색가공학회지
    • /
    • 제26권1호
    • /
    • pp.22-31
    • /
    • 2014
  • This study investigated the physical properties of warm up yarns and their knitted fabrics including the dye affinity and color fastness to washing of these knitted fabrics according to the various dyeing times and temperatures on dyeing process. The results were summarized as follows. The tenacity of Nylon/PP warm-up yarn was 4g/d and breaking strain was 4.5%. The wet and dry thermal shrinkages were higher than those of PET warm-up yarn. The maximum heat flow rate(Qmax) of Nylon/PP warm-up knitted fabric was lower than that of PET warm-up knitted fabric and heat keeping rate(a) of Nylon/PP warm-up knitted fabric was higher as 47% than that of PET warm-up knitted fabric. It was shown that the shape retention and wearing comfort of Nylon/PP warm-up knitted fabric were better than those of PET warm-up knitted fabric. The dye-affinity(K/S) of Nylon/PP warm-up knitted fabric showed maximum value at the dyeing condition of 40minute or 50minute dyeing time with $80^{\circ}C$ dyeing temperature, but PET warm-up knitted fabric showed maximum value at the 30minute or 40minute with $110^{\circ}C$ dyeing temperature. Finally, the color fastness to washing of Nylon/PP warm-up knitted fabric showed good value as between 4 and 5 grade.

가축분뇨처리시설과 연계한 상향류식 인공습지의 자연형 후속처리공정 적용방안에 관한 연구 (A study on application of eco-friendly follow-up process connected with livestock wastewater treatment plant using the upflow constructed wetland)

  • 최한나;조은하;강호근;박주현;강선홍
    • 상하수도학회지
    • /
    • 제29권3호
    • /
    • pp.359-370
    • /
    • 2015
  • This study developed an up-flow wetland providing either an eco-friendly follow-up process of medium-sized public treatment facility for livestock manure or a non-point source pollution controller near livestock farms. The four bench-scale up-flow wetlands were operated with four different bed media sets. The removal efficiencies of the wetland effluent for CODCr, TN, TP, SS were 35.2 %, 29.5 %, 31.2 % and 52.2 % for set 1(Blank, without reed, with bio-ceramic), 40.6 %, 43.4 %, 42.2 % and 55.4 % for set 2(with bio-reed & without bio-ceramic), 45.2 %, 48.7 %, 46.6 % and 66.3 % for set 3(with bio-reed & bio-ceramic), 32.9 %, 27.3 %, 29.3 % and 54.1 % for Set 4(with reed & bio ceramic), respectively. The set 3 condition having a mixture of bio-reed and bio-ceramic showed the highest efficiency in the bench-scale evaluation. This study suggests a mixture of bio-reed and bio-ceramic as suitable bed media in the construction of artificial wetlands near livestock farms. Soils including the bed media were monitored during the evaluation for trace elements. Soil analysis results were satisfied with the Korean Soil Contamination Standard. This study showed that the up-flow constructed wetland was feasible to treat the effluent livestock wastewater treatment facility.

합성 고분자물질 A611P를 첨가한 기액 2상 수직상향의 유동특성에 관한 실험적 연구 (Experimental study on the flow characteristic by the co-polymer A6l1P additive in gas-liquid two-phase vertical up flow)

  • 차경옥;김재근;양회준
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.398-410
    • /
    • 1998
  • Two-phase flow phenomena are observed in many industrial facilities and make much importance of optimum design for nuclear power plant and the liquid transportation system. The particular flow pattern depends on the conditions of pressure, flow velocity, and channel geometry. However, the research on drag reduction in two-phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction and void fraction by polymer addition in the two-phase flow system. We find that the polymer solution changes the characteristic of two-phase flow. The peak position of local void friction moves from tile wall of the pipe to the center of the pipe when polymer concentration increase. And then we predict that it is closely related with the frau reduction.

  • PDF

오염총량관리 유량측정자료를 이용한 낙동강 유역 유황분석 (Flow Duration Curve Analysis for Nakdong River Basin using TMDL Flow Data)

  • 김재철;김상단
    • 한국물환경학회지
    • /
    • 제23권3호
    • /
    • pp.332-338
    • /
    • 2007
  • In this study the flow duration curves for Nakdong river basin are analyzed. The TANK model is used as a hydrologic simulation model whose parameters are estimated from 8-day intervals flow data measured by NIER Nakdong River Water Environment Laboratory. As a comparison result between generated natural and present river flow, the present river flow is higher than the natural river flow in the up- and mid-stream of Nakdong river, while the present river flow is lower than the natural river flow in the down stream of Nakdong river.

Intelligent Tuning of the Two Degrees-of-Freedom Proportional-Integral-Derivative Controller On the Distributed Control System for Steam Temperature Control of Thermal Power Plant

  • Dong Hwa Kim;Won Pyo Hong;Seung Hack Lee
    • KIEE International Transaction on Systems and Control
    • /
    • 제2D권2호
    • /
    • pp.78-91
    • /
    • 2002
  • In the thermal power plant, there are six manipulated variables: main steam flow, feedwater flow, fuel flow, air flow, spray flow, and gas recirculation flow. There are five controlled variables: generator output, main steam pressure, main steam temperature, exhaust gas density, and reheater steam temperature. Therefore, the thermal power plant control system is a multinput and output system. In the control system, the main steam temperature is typically regulated by the fuel flow rate and the spray flow rate, and the reheater steam temperature is regulated by the gas recirculation flow rate. However, strict control of the steam temperature must be maintained to avoid thermal stress. Maintaining the steam temperature can be difficult due to heating value variation to the fuel source, time delay changes in the main steam temperature versus changes in fuel flow rate, difficulty of control of the main steam temperature control and the reheater steam temperature control system owing to the dynamic response characteristics of changes in steam temperature and the reheater steam temperature, and the fluctuation of inner fluid water and steam flow rates during the load-following operation. Up to the present time, the Proportional-Integral-Derivative Controller has been used to operate this system. However, it is very difficult to achieve an optimal PID gain with no experience, since the gain of the PID controller has to be manually tuned by trial and error. This paper focuses on the characteristic comparison of the PID controller and the modified 2-DOF PID Controller (Two-Degrees-Freedom Proportional-Integral-Derivative) on the DCS (Distributed Control System). The method is to design an optimal controller that can be operated on the thermal generating plant in Seoul, Korea. The modified 2-DOF PID controller is designed to enable parameters to fit into the thermal plant during disturbances. To attain an optimal control method, transfer function and operating data from start-up, running, and stop procedures of the thermal plant have been acquired. Through this research, the stable range of a 2-DOF parameter for only this system could be found for the start-up procedure and this parameter could be used for the tuning problem. Also, this paper addressed whether an intelligent tuning method based on immune network algorithms can be used effectively in tuning these controllers.

  • PDF

A study on the dynamics of a turbine-meter-type flowmeter for hydraulic systems

  • Yokota, Shinichi;Kim, Do-Tae;Suzuki, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.60-65
    • /
    • 1994
  • In this study, the dynamic characteristics of a turbine-meter-type flowmeter is investigated by making use of the remote instantaneous flow rate measurement method (RIFM). The results of the frequency response test indicated that the gain of the flow rate of the turbine-meter-type flowmeter relative to the flow rate of the RIFM was nearly unity up to 40Hz and the phase lag of the flow rate became 90 degrees at 70Hz.

  • PDF

An Analytical Investigation on the Build-up of the Temperature Field due to a Point Heat Source in Shallow Coastal Water with Oscillatory Alongshore-flow

  • Jung, Kyung-Tae;Kim, Chong-Hak;Jang, Chan-Joo;Lee, Ho-Jin;Kang, Sok-Kuh;Yjm, Ki-Dai
    • Ocean and Polar Research
    • /
    • 제25권1호
    • /
    • pp.63-74
    • /
    • 2003
  • The build-up of the heat field in shallow coastal water due to a point source has been investigated using an analytical solution of a time-integral form derived by extending the solutions by Holley(1969) and also presented in Harleman (1971). The uniform water depth is assumed with non-isotropic turbulent dispersion. The alongshore-flow is assumed to be uni-directional, spatially uniform and oscillatory. Due to the presence of the oscillatory alongshore-flow, the heat build-up occurs in an oscillatory manner, and the excess temperature thereby fluctuates in that course and even in the quasi-steady state. A series of calculations reveal that proper choices of the decay coefficient as well as dispersion coefficients are critical to the reliable prediction of the excess temperature field. The dispersion coefficients determine the absolute values of the excess temperature and characterize the shoreline profile, particularly within the tidal excursion distance, while the decay coefficient determines the absolute value of the excess temperature and the convergence rate to that of the quasi-steady state. Within the e-folding time scale $1/k_d$ (where $k_d$ is the heat decay coefficient), heat build-up occurs more than 90% of the quasi-steady state values in a region within a tidal excursion distance (L), while occurs increasingly less the farther we go to the downstream direction (about 80% at 1.25L, and 70% at 1.5L). Calculations with onshore and offshore discharges indicate that thermal spreading in the direction of the shoreline is reduced as the shoreline constraint which controls the lateral mixing is reduced. The importance of collecting long-term records of in situ meteorological conditions and clarifying the definition of the heat loss coefficient is addressed. Interactive use of analytical and numerical modeling is recommended as a desirable way to obtain a reliable estimate of the far-field excess temperature along with extensive field measurements.

선박용 HVAC 시스템의 소음저감성능 평가 (Evaluation of Noise Reduction Performance of HVAC System for Ships)

  • 김상렬;김현실;김재승;김봉기;이성현
    • 한국음향학회지
    • /
    • 제29권8호
    • /
    • pp.497-503
    • /
    • 2010
  • 본 논문은 여객선용 HVAC 시스템 목업을 구축하여 HVAC 요소의 성능평가를 수행한 결과를 다루었다. 측정은 룸 유니트 (Room Unit), 소음기 등 6가지 종류에 대해 이루어졌으며 여러 유량에 대해 삽입손실을 측정하였다. 소음기 직경이 작고 유량이 클수록 유동소음이 커져서 소음저감효과를 방해하지만, 직경이 커질수록 유동소음의 효과는 작아지고 삽입손실은 최대 25 dB까지 나타남을 확인하였다. 디퓨저 형태의 룸 유니트는 대체로 삽입손실이 0 - 10 dB 이지만 노즐 형태는 삽입손실이 최대 -15 dB 까지 소음이 커질 수 있음을 확인하였다. 또한 덕트 배열에 따라 최대 2 dB 까지 실내소음이 차이날 수 있음을 보였으며 각 룸 유니트에 동일한 유량이 배출하도록 조절하는 것이 보다 낮은 소음레벨을 얻을 수 있음을 확인하였다.

고로하부 액체유동에 대한 수치해석 사례 - 냉간유동 (Numerical Simulation of the Liquid Flow in the Lower Part of the Blast Furnace - A Cold Flow Case)

  • 진홍종;최상민;정진경
    • 한국연소학회지
    • /
    • 제13권2호
    • /
    • pp.33-41
    • /
    • 2008
  • The high permeability of the gas in the molten iron of the dripping zone of the blast furnace is a major factor in achieving the stable operation of a furnace with high productivity. Basic studies of the liquid flow behavior in a packed bed are necessary to grasp the effect of various operational changes on conditions in the dropping zone. Molten iron and slag together playa critical role in the lower zone, transporting mass and energy, while impairing and redistributing the gas flow. In turn, molten iron and slag undergo physical and chemical changes, and are redistributed radially as they descend to the hearth. In this research, mathematical formulations are derived for the gas and the liquid. The solid phase is fixed with constant porosity. The information for the molten iron and slag includes the hold-up, velocity, pressure, and information related to the areas of interaction between the gas and the liquid, and the solid and the liquid. Predictable results include the velocity, pressure and temperature distribution. Additional parameters include the packed particle size and the air blast rate.

  • PDF

언덕지형을 지나는 유동에 관한 연구 (Wind Flow over Hilly Terrain)

  • 임희창;김현구;이정묵;경남호
    • 한국대기환경학회지
    • /
    • 제12권4호
    • /
    • pp.459-472
    • /
    • 1996
  • An experimental investigation on the wind flow over smooth bell-shaped two-dimensional hills with hill slopes (the ratio of height to half width) of 0.3 and 0.5 is performed in an atmospheric boundary-layer wind tunnel. Two categories of the models are used in the present investigation; six two-dimensional single-hills, and four continuous double-hills. The measurements of the flow field and surface static-pressure distribution are carried out over the Reynolds number (based on the hill height) of 1.9 $\times 10^4, 3.3 \times 10^4, and 5.6 \times 10^4$. The velocity profiles and turbulence characteristics are measured by the pitot-tube and X-type hot-wire anemometer, respectively. The undisturbed boundary-layer profile on the bottom surface of the wind tunnel is reasonably consistent with the power-law profile with $\alpha = 7.0 (1/\alpha$ is the power-law exponent) and shows good spanwise uniformities. The profiles of turbulent intensity are found to be consistent along the centerline of the wind tunnel. The measured non-dimensional speed-up profiles at the hill crest show good agreements with the predictions of Jackson and Hunt's linear theory. The flow separation occurs in the hill slope of 0.5, and the oil-ink dot method is used to find the reattachment points in the leeside of the hill. The measured reattachment points are compared with the numerical predictions. Comparisons of the mean velocity profiles and surface pressure distributions between the numerical predictions and the experimental results show good agreements.

  • PDF