• Title/Summary/Keyword: unsupervised feature learning

Search Result 78, Processing Time 0.033 seconds

Unsupervised feature selection using orthogonal decomposition and low-rank approximation

  • Lim, Hyunki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.77-84
    • /
    • 2022
  • In this paper, we propose a novel unsupervised feature selection method. Conventional unsupervised feature selection method defines virtual label and uses a regression analysis that projects the given data to this label. However, since virtual labels are generated from data, they can be formed similarly in the space. Thus, in the conventional method, the features can be selected in only restricted space. To solve this problem, in this paper, features are selected using orthogonal projections and low-rank approximations. To solve this problem, in this paper, a virtual label is projected to orthogonal space and the given data set is also projected to this space. Through this process, effective features can be selected. In addition, projection matrix is restricted low-rank to allow more effective features to be selected in low-dimensional space. To achieve these objectives, a cost function is designed and an efficient optimization method is proposed. Experimental results for six data sets demonstrate that the proposed method outperforms existing conventional unsupervised feature selection methods in most cases.

An intelligent health monitoring method for processing data collected from the sensor network of structure

  • Ghiasi, Ramin;Ghasemi, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.703-716
    • /
    • 2018
  • Rapid detection of damages in civil engineering structures, in order to assess their possible disorders and as a result produce competent decision making, are crucial to ensure their health and ultimately enhance the level of public safety. In traditional intelligent health monitoring methods, the features are manually extracted depending on prior knowledge and diagnostic expertise. Inspired by the idea of unsupervised feature learning that uses artificial intelligence techniques to learn features from raw data, a two-stage learning method is proposed here for intelligent health monitoring of civil engineering structures. In the first stage, $Nystr{\ddot{o}}m$ method is used for automatic feature extraction from structural vibration signals. In the second stage, Moving Kernel Principal Component Analysis (MKPCA) is employed to classify the health conditions based on the extracted features. In this paper, KPCA has been implemented in a new form as Moving KPCA for effectively segmenting large data and for determining the changes, as data are continuously collected. Numerical results revealed that the proposed health monitoring system has a satisfactory performance for detecting the damage scenarios of a three-story frame aluminum structure. Furthermore, the enhanced version of KPCA methods exhibited a significant improvement in sensitivity, accuracy, and effectiveness over conventional methods.

Detecting outliers in segmented genomes of flu virus using an alignment-free approach

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.2.1-2.11
    • /
    • 2020
  • In this paper, we propose a new approach to detecting outliers in a set of segmented genomes of the flu virus, a data set with a heterogeneous set of sequences. The approach has the following computational phases: feature extraction, which is a mapping into feature space, alignment-free distance measure to measure the distance between any two segmented genomes, and a mapping into distance space to analyze a quantum of distance values. The approach is implemented using supervised and unsupervised learning modes. The experiments show robustness in detecting outliers of the segmented genome of the flu virus.

Abnormal Vibration Diagnostics Algorithm of Rotating Machinery Using Self-Organizing Feature Map nad Learing Vector Quantization (자기조직화특징지도와 학습벡터양자화를 이용한 회전기계의 이상진동진단 알고리듬)

  • 양보석;서상윤;임동수;이수종
    • Journal of KSNVE
    • /
    • v.10 no.2
    • /
    • pp.331-337
    • /
    • 2000
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal defect diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised learning algorithm is used to improve the quality of the classifier decision regions.

  • PDF

Feature selection for text data via topic modeling (토픽 모형을 이용한 텍스트 데이터의 단어 선택)

  • Woosol, Jang;Ye Eun, Kim;Won, Son
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.6
    • /
    • pp.739-754
    • /
    • 2022
  • Usually, text data consists of many variables, and some of them are closely correlated. Such multi-collinearity often results in inefficient or inaccurate statistical analysis. For supervised learning, one can select features by examining the relationship between target variables and explanatory variables. On the other hand, for unsupervised learning, since target variables are absent, one cannot use such a feature selection procedure as in supervised learning. In this study, we propose a word selection procedure that employs topic models to find latent topics. We substitute topics for the target variables and select terms which show high relevance for each topic. Applying the procedure to real data, we found that the proposed word selection procedure can give clear topic interpretation by removing high-frequency words prevalent in various topics. In addition, we observed that, by applying the selected variables to the classifiers such as naïve Bayes classifiers and support vector machines, the proposed feature selection procedure gives results comparable to those obtained by using class label information.

Cell Images Classification using Deep Convolutional Autoencoder of Unsupervised Learning (비지도학습의 딥 컨벌루셔널 자동 인코더를 이용한 셀 이미지 분류)

  • Vununu, Caleb;Park, Jin-Hyeok;Kwon, Oh-Jun;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.942-943
    • /
    • 2021
  • The present work proposes a classification system for the HEp-2 cell images using an unsupervised deep feature learning method. Unlike most of the state-of-the-art methods in the literature that utilize deep learning in a strictly supervised way, we propose here the use of the deep convolutional autoencoder (DCAE) as the principal feature extractor for classifying the different types of the HEp-2 cell images. The network takes the original cell images as the inputs and learns to reconstruct them in order to capture the features related to the global shape of the cells. A final feature vector is constructed by using the latent representations extracted from the DCAE, giving a highly discriminative feature representation. The created features will be fed to a nonlinear classifier whose output will represent the final type of the cell image. We have tested the discriminability of the proposed features on one of the most popular HEp-2 cell classification datasets, the SNPHEp-2 dataset and the results show that the proposed features manage to capture the distinctive characteristics of the different cell types while performing at least as well as the actual deep learning based state-of-the-art methods.

Intelligent Agent System by Self Organizing Neural Network

  • Cho, Young-Im
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1468-1473
    • /
    • 2005
  • In this paper, I proposed the INTelligent Agent System by Kohonen's Self Organizing Neural Network (INTAS). INTAS creates each user's profile from the information. Based on it, learning community grouping suitable to each individual is automatically executed by using unsupervised learning algorithm. In INTAS, grouping and learning are automatically performed on real time by multiagents, regardless of the number of learners. A new framework has been proposed to generate multiagents, and it is a feature that efficient multiagents can be executed by proposing a new negotiation mode between multiagents..

  • PDF

Advanced insider threat detection model to apply periodic work atmosphere

  • Oh, Junhyoung;Kim, Tae Ho;Lee, Kyung Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1722-1737
    • /
    • 2019
  • We developed an insider threat detection model to be used by organizations that repeat tasks at regular intervals. The model identifies the best combination of different feature selection algorithms, unsupervised learning algorithms, and standard scores. We derive a model specifically optimized for the organization by evaluating each combination in terms of accuracy, AUC (Area Under the Curve), and TPR (True Positive Rate). In order to validate this model, a four-year log was applied to the system handling sensitive information from public institutions. In the research target system, the user log was analyzed monthly based on the fact that the business process is processed at a cycle of one year, and the roles are determined for each person in charge. In order to classify the behavior of a user as abnormal, the standard scores of each organization were calculated and classified as abnormal when they exceeded certain thresholds. Using this method, we proposed an optimized model for the organization and verified it.

Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches

  • Kamran, Muhammad;Shahani, Niaz Muhammad;Armaghani, Danial Jahed
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.107-121
    • /
    • 2022
  • Coal pillar assessment is of broad importance to underground engineering structure, as the pillar failure can lead to enormous disasters. Because of the highly non-linear correlation between the pillar failure and its influential attributes, conventional forecasting techniques cannot generate accurate outcomes. To approximate the complex behavior of coal pillar, this paper elucidates a new idea to forecast the underground coal pillar stability using combined unsupervised-supervised learning. In order to build a database of the study, a total of 90 patterns of pillar cases were collected from authentic engineering structures. A state-of-the art feature depletion method, t-distribution symmetric neighbor embedding (t-SNE) has been employed to reduce significance of actual data features. Consequently, an unsupervised machine learning technique K-mean clustering was followed to reassign the t-SNE dimensionality reduced data in order to compute the relative class of coal pillar cases. Following that, the reassign dataset was divided into two parts: 70 percent for training dataset and 30 percent for testing dataset, respectively. The accuracy of the predicted data was then examined using support vector classifier (SVC) model performance measures such as precision, recall, and f1-score. As a result, the proposed model can be employed for properly predicting the pillar failure class in a variety of underground rock engineering projects.

Abnormal Vibration Diagnosis of rotating Machinery Using Self-Organizing Feature Map (자기조직화 특징지도를 이용한 회전기계의 이상진동진단)

  • Seo, Sang-Yoon;Lim, Dong-Soo;Yang, Bo-Suk
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.317-323
    • /
    • 1999
  • The necessity of diagnosis of the rotating machinery which is widely used in the industry is increasing. Many research has been conducted to manipulate field vibration signal data for diagnosing the fault of designated machinery. As the pattern recognition tool of that signal, neural network which use usually back-propagation algorithm was used in the diagnosis of rotating machinery. In this paper, self-organizing feature map(SOFM) which is unsupervised learning algorithm is used in the abnormal vibration diagnosis of rotating machinery and then learning vector quantization(LVQ) which is supervised teaming algorithm is used to improve the quality of the classifier decision regions.

  • PDF