• 제목/요약/키워드: unsteady flow simulation

검색결과 464건 처리시간 0.026초

Sub-cavity를 이용한 초음속 공동유동의 압력진동 제어 (Control of the Pressure Oscillation in a Supersonic Cavity Flow Using a Sub-cavity)

  • 이영기;정성재;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.310-313
    • /
    • 2006
  • 본 연구에서는 sub-cavity를 적용한 경우 얻어지는 압력진동의 제어효과를 수치계산 방법을 사용하여 조사하였으며, 삼각돌기와 블로잉제트를 사용하여 얻어진 결과들과 비교하여 그 효율성을 검토하였다. 사각형의 공동을 지나는 유동장은 3차원 비정상 압축성 Wavier-Stokes 방정식에 완전 내제적 유한체적법 및 다단계 Runge-Kutta 방법을 적용하여 수치모사하였으며, 공동유동의 난류상태량들을 적절히 예측하기 위하여 large eddy simulation(LES)을 수행하였다. 본 연구의 결과로부터, 공동후단 부근에서 발생하는 압력진동이 전체 공동유동의 비정상 거동을 지배하며, sub-cavity를 사용하여 압력진동의 폭을 감소시킬 수 있음을 알았다.

  • PDF

초음속 발사체의 공력 특성에 관한 수치해석 (Numerical Simulation of Aerodynamic Characteristics of a Supersonic Projectile)

  • 임채민;이정민;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2005년도 제25회 추계학술대회논문집
    • /
    • pp.86-89
    • /
    • 2005
  • 2단식 경가스총으로 부터 발사된 발사체의 공기역학적 특성을 연구하기 위해 이동 경계 수치계산법을 축대칭 비정상 압축성 오일러 방정식에 적용하였다. 본 연구로 얻어진 결과는 초음속으로 발사된 발사체로 인한 충격파와 폭발파사이 간섭현상, 와류와 barrel 충격파사이의 간섭현상, 정상 부족팽창 제트을 관찰할 수 있었으며, 발사체 질량 변화에 따른 발사체의 속도, 가속도, 항력 선도를 예측하였다.

  • PDF

로켓노즐에서 발생하는 횡력변동에 관한 연구 (Study on the Lateral Force Fluctuations in a Rocket Nozzle)

  • ;이종성;김희동
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.315-319
    • /
    • 2009
  • Investigation of the lateral force fluctuations in an axisymmetric overexpanded compressed truncated perfect (CTP) nozzle for the shutdown transient is presented. These nozzles experience side-loads during start-up and shut-down operations, because of the flow separation at nozzle walls. Two types of flow separations such as free shock separation (FSS) and restricted shock separation (RSS) shock structure occur. A two-dimensional unsteady numerical simulation has been carried out over an axisymmetric CTP nozzle to simulate the lateral force fluctuations in nozzle during shutdown process. Reynolds Averaged Navier-Stokes equations are numerically solved using a fully implicit finite volume scheme. Governing equations are solved by coupled implicit scheme. Two equation k-$\omega$ SST turbulence model is selected. Unsteady pressure is measured at four locations along the nozzle wall. Present pressure variation compared well with the experimental data. During shutdown transient, separation pattern varies from FSS to RSS and finally returns to FSS. Several pressure peaks are observed during the RSS separation pattern. These pressure peaks generate lateral force or side loads in rocket nozzle.

  • PDF

주기 회전하는 원형주상체 주위 유동장의 수치 시뮬레이션 (Numerical simulation on laminar flow past an oscillating circular cylinder)

  • 문진국;박종천;전호환
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.210-211
    • /
    • 2004
  • The effect of oscillating on the unsteady laminar flow past a circular cylinder is numerically investigated in the present study. Our study is to analyze the vortex formation behind a circular cylinder for different rotary oscillation conditions. And then we are study to portray the unsteady dynamics of wake flows. We decide lock-on region by observing the phase switching phenomena We classify the vortex formation patterns in the primary lock-on region The present study is to identify the quasi-periodic state around lock-on region. At the boundary between lock-on and non-lock-on the shedding frequency is bifurcated. After the bifurcation, one frequency follow the forcing frequency ($S_f$) and the other returns to the natural shedding frequency ($St_0$). In the quasi-periodic state, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

  • PDF

회전용적형 기어펌프 유동의 2차원 수치해석 (Two-dimensional numerical simulation of volumetric gear pump flow)

  • 이중호;박종원;김태구;이상욱
    • 한국유체기계학회 논문집
    • /
    • 제13권5호
    • /
    • pp.17-21
    • /
    • 2010
  • A volumetric gear pump is often used in extensive industrial applications to provide both high pressure and sufficiently high flow rate by physical displacement of finite volume of fluid with each revolution. To better understand the unsteady flow characteristics within the pump, numerical simulations were conducted by using moving dynamic meshing (MDM) techniques in commercially available CFD software, FLUENT. The effects of rotor clearance size and rotational speed of rotor on the flow characteristics, specially the temporal variation of velocity and pressure field, which is a main source of flow noise, was investigated. The results showed that significant reverse flow is developed in the rotor clearance and that its size is one of the most important factors affecting flow characteristics and pressure pulsation.

Stabilized finite element technique and its application for turbulent flow with high Reynolds number

  • Huang, Cheng;Yan, Bao;Zhou, Dai;Xu, Jinquan
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.465-480
    • /
    • 2011
  • In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.

준2차원 홍수범람 모형에 관한 연구 (Quasi-Two-Dimensional Model for Floodplain Flow Simulation)

  • 전경수
    • 한국수자원학회논문집
    • /
    • 제31권5호
    • /
    • pp.515-528
    • /
    • 1998
  • 홍수터 흐름의 모의를 위한 준2차원 계산모형을 수립하였다. 모형의 계산망으 2차원 홍수터 구획체계를 하도와 결합한 것으로서 일반적으로 폐합형 망으로 구성된다. 홍수터 흐름에 대해서는 각 구획에서의 수량보존에 관한 연속방정식 및 인접구획간 하도형 또는 월류형 수위-유량 관계식을, 하천 본류에 대해서는 1차원 부정류에 대한 St.Venant 방정식을 각각 지배방정식으로 하여 흐름을 모의하는 준2차원 계산모형으로서, 폐합형 하천수계에 대한 부정류 해석 수치기법을 홍수터 흐름까지 포함하도록 확장함으로써 하천 본류 및 홍수터 흐름을 동시에 모의할 수 있는 수치모형을 개발하였다. 개발된 모형을 여러 검증문제에 적용하여 모형의 적용성을 조사하였으며, 각종 모형의 매개변수들에 관한 민감도 분석을 수행하였다. 흐름단면의 형상이 복잡하고 불규칙적일수록 본 모형이 Cunge(1975)의 경우보다 정확한 계산결과를 나타내었으며, 하천 본류로부터 홍수터로의 범람은 물론, 본류로의 재유입, 즉 흐름방향이 반전되는 현상이 잘 모의되었다.

  • PDF

Bluff-body 후방의 난류유동에 대한 대와동모사(LES)의 성능검토 (PERFORMANCE EVALUATION OF LARGE EDDY SIMULATION FOR TURBULENT FLOW BEHIND A BLUFF-BODY)

  • 공민석;황철홍;이창언;김세원
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.32-38
    • /
    • 2006
  • The objective of this study is to evaluate the prediction accuracy of development large eddy simulation(LES) program for turbulent flow behind a bluff-body. The LES solver was implemented on parallel computer consisting 16 processors. To verify the capability of LES code, the results were compared with those of Reynolds Averaged Navier-Stokes(RANS) using standard ${\kappa}-{\varepsilon}$ model as well as experimental data. The results showed that the LES and RANS qualitatively well predicted the experimental results, such as mean axial, radial velocities and turbulent kinetic energy. In the quantitative analysis, however, the LES showed a better prediction performance than RANS. Specially, the LES well described characteristics of the recirculation zones, such as air stagnation point and jet stagnation point. Finally, the unsteady phenomena on the Bluff-body, such as the transition of recirculation region and vorticity, was examined with LES methodology.

중첩 격자계를 이용한 물체운동의 수치 시뮬레이션 (Numerical Simulation of Body Motion Using a Composite Grid System)

  • 박종천;전호환;송기종
    • 대한조선학회논문집
    • /
    • 제40권5호
    • /
    • pp.36-42
    • /
    • 2003
  • A CFD simulation technique has been developed to handle the unsteady body motion with large amplitude by use of overlapping multi-block grid system. The three-dimensional, viscous and incompressible flow around body is investigated by solving the Navier-Stokes equations, and the motion of body is represented by moving effect of the grid system. Composite grid system is employed in order to deal with both the body motion with large amplitude and the condition of numerical wave maker in convenience at the same time. The governing equations, Navier-Stokes (N-S) and continuity equations, are discretized by a finite volume method, in the framework of an O-H type boundary-fitted grid system (inner grid system including test model) and a rectangular grid system (outer grid system including simulation equipments for generation of wave environments). If this study, several flow configurations, such as an oscillating cylinder with large KC number, are studied in order to predict and evaluate the hydrodynamic forces. Furthermore, the motion simulation of a Series 60 model advancing in a uniform flow under the condition of enforced roll motion of angle 20$^{\circ}$ is performed in the developed numerical wave tank.

맥동류 내 물체 형상에 따른 항력에 대한 CFD 계산 (CFD ANALYSIS FOR THE DRAG OF AN INTERIOR BODY IN A PULSATILE FLOW WITH VARIOUS SHAPE DESIGN)

  • 황도연;한병윤;유성수;이명수;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.38-43
    • /
    • 2009
  • The objective of this study is to get a fundamental data for the shape of a robot which operates in blood vessels. The overall analysis was calculated with a CFD code. The flow was idealized as a pulsatile flow, and first the robot was assumed as a simple capsule model. Then a drag of the body in the flow was calculated, and this process was repeated, varying the shape. To validate all the result, the pulastile velocity simulation was compared with the theoretical data, and the drag of a body was compared with the existing data of the other papers first. Then with the next calculation the guideline for the design of robot shape was presented.

  • PDF