• Title/Summary/Keyword: unsteady flow simulation

Search Result 463, Processing Time 0.023 seconds

Numerical Simulation of Airframe Separation of a Missile System Using an Unstructured Overset Mesh Technique (비정렬 중첩격자기법을 이용한 유도무기의 기체분리운동 모사)

  • Jeong, Mun-Seung;Lee, Sang-Uk;Gwon, O-Jun;Heo, Gi-Hun;Byeon, U-Sik
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.5
    • /
    • pp.19-29
    • /
    • 2006
  • In this study, numerical simulation of airframes separating from a missile system has been preformed. For the time-accurate trajectory simulation, six D.O.F equations of motion of multiply connected bodies were derived and these equations have been coupled with the unstructured overset mesh technique for the treatment of independent mesh blocks moving with each body component. Applications were made for the simulation of the airframe separation at missile angles of attack of 0 and 5 degrees. It was demonstrated that the present method is efficient and robust for the prediction of unsteady time-accurate flow fields involving multiple bodies in relative motion.

Performance Evaluation of Large Eddy Simulation for Recirculating and Swirling Flows (재순환 및 선회 유동에 대한 대와동모사(LES)의 성능검토)

  • Hwang Cheol-Hong;Lee Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.364-372
    • /
    • 2006
  • The objective of this study is to evaluate the efficiency and the prediction accuracy of developed large eddy simulation (LES) program for complex turbulent flows, such as recirculating and swirling flows. To save the computational cost, a Beowulf cluster system consisting 16 processors was constructed. The flows in backward-facing step and dump combustor were examined as representative recirculating and swirling flows. Firstly, a direct numerical simulation (DNS) for laminar backward-facing step flows was previously conducted to validate the overall performance of program. Then LES was carried out for turbulent backward-facing step flows. The results of laminar flow showed a qualitative and quantitative agreement between simulations and experiments. The simulations of the turbulent flow also showed reasonable results. Secondly, LES results for non-swirling and swirling flows in a dump combustor were compared with the results of Reynolds-averaged Navier-Stokes (RANS) using standard $k-{\varepsilon}$ model. The results show that LES has a better performance in predicting the mean axial and azimuthal velocities, comer recirculation zone (CRZ) and center toroidal recirculation zone (CTRZ) than those of RANS. Finally, it was examined the capability of LES for the description of unsteady phenomena.

Analysis of Unsteady Blade Forces in a Vertical-axis Small Wind Turbine (수직형 소형풍력터빈의 비정상 익력 평가)

  • LEE, SANG-MOON;KIM, CHUL-KYU;JEON, SEOK-YUN;ALI, SAJID;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • In the present study, unsteady flow analysis has been conducted to investigate the blade forces and wake flow around a hybrid street-lamp having a vertical-axis small wind turbine and a photovoltaic panel. Uniform velocities of 3, 5 and 7 m/s are applied as inlet boundary condition. Relatively large vortex shedding is formed at the wake region of the photovoltaic panel, which affects the increase of blade torque and wake flow downstream of the wind turbine. It is found that blade force has a good relation to the variation of the angle of attack with the rotation of turbine blades. Variations in the torque on the turbine blade over time create a cyclic fluctuation, which can be a source of turbine vibration and noise. Unsteady fluctuation of blade forces is also analyzed to understand the nature of the vibration of a small wind turbine over time. The detailed flow field inside the turbine blades is analyzed and discussed.

Numerical Simulation of Unsteady Cavitating Flow Around 2D Hydrofoil (수중익 주위의 2차원 비정상 공동 현상 해석)

  • Lee, Se-Young;Park, Soo-Hyung;Lee, Chang-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.8
    • /
    • pp.653-662
    • /
    • 2007
  • Due to the difficulty raised from the coupling of cavitation modeling with turbulent flow, numerical simulation for two phase flow remains one of the challenging issues in the society. This research focuses on the development of numerical code to deal with incompressible two phase flow around 2D hydrofoil by combing the cavitation model suggested by Kunz et al. with $k-{\varepsilon}$ turbulent model. The simulation results are compared to experimental data to verify the validity of the developed code. Also, the comparison of the calculation results is made with LES results to evaluate the capability of $k-{\varepsilon}$ turbulence model. The calculation results show very good agreement with experimental observations even though this code can not grasp the small scaled bubbles in the calculation wheres LES can hold the real physics. This code will be extended to 3D compressible two phase flow for the study on the fluid dynamics in the inducers and impellers.

Drag reduction of a rapid vehicle in supercavitating flow

  • Yang, D.;Xiong, Y.L.;Guo, X.F.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.35-44
    • /
    • 2017
  • Supercavitation is one of the most attractive technologies to achieve high speed for underwater vehicles. However, the multiphase flow with high-speed around the supercavitating vehicle (SCV) is difficult to simulate accurately. In this paper, we use modified the turbulent viscosity formula in the Standard K-Epsilon (SKE) turbulent model to simulate the supercavitating flow. The numerical results of flow over several typical cavitators are in agreement with the experimental data and theoretical prediction. In the last part, a flying SCV was studied by unsteady numerical simulation. The selected computation setup corresponds to an outdoor supercavitating experiment. Only very limited experimental data was recorded due to the difficulties under the circumstance of high-speed underwater condition. However, the numerical simulation recovers the whole scenario, the results are qualitatively reasonable by comparing to the experimental observations. The drag reduction capacity of supercavitation is evaluated by comparing with a moving vehicle launching at the same speed but without supercavitation. The results show that the supercavitation reduces the drag of the vehicle dramatically.

A Study on the Performance Characteristics of a Disk-type Drag Pump (원판형 드래그펌프의 성능특성에 관한 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.643-648
    • /
    • 2001
  • The direct simulation Monte Carlo(DSMC) method is applied to investigate steady and unsteady flow fields of a single-stage disk-type drag pump. Two different kinds of pumps are considered: the first one is a rotor-rotor combination, and the second one is a rotor-stator combination. The pumping channels are cut on a rotor and stator. The rotor and stator have 10 Archimedes' spiral blades, respectively. In the present DSMC method, the variable hard sphere model is used as a molecular model, and the no time counter method is employed as a collision sampling technique. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies. The DSMC results are in good agreement with the experimental data.

  • PDF

Unsteady Staging Plow Analysis Using Moving Grid (움직이는 격자를 이용한 비정상 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.182-185
    • /
    • 2005
  • In this study, the numerical and dynamic simulation on staging problem including forward jet mechanism is conducted. The forward jet plays a vital role in staging, which jets out from aftbody. This staging environment needs full dynamic characteristics study and flow analysis for securing staging safety. Present study performs dynamic simulation of prebody and aftbody with flow analysis using Chimera grid scheme which is usually used for moving simulations. As a result, separation mechanism using forward jet well works in staging for given initial conditions and reverse thrust, chamber pressure variation from experiments. Furthermore, it is found that the technique using forward jets for staging is excellent for securing the separation safety.

  • PDF

Numerical Simulation of friction Stir Spot Welding Process with AA5083-H18 (AA5083-H18 판재의 마찰 교반 점 용접 공정에 대한 전산 해석)

  • Kim, Don-Gun;Badarinarayan, Harsha;Ryu, Ill;Kim, Ji-Hoon;Kim, Chong-Min;Okamoto, Kazutaka;Wagoner, R.H.;Chung, Kwan-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.458-461
    • /
    • 2009
  • Thermo-mechanical simulation of the Friction Stir Spot Welding (FSSW) processes was performed for the AA5083-H18 sheets, utilizing commercial Finite Element Method (FEM) and Finite Volume Method (FVM) which are based on Lagrangian and Eulerian formulations, respectively. The Lagrangian explicit dynamic FEM code, PAM-CRASH, and the Eulerian Computational Fluid Dynamics (CFD) FVM code, STAR-CD, were utilized to understand the effect of pin geometry on weld strength and material flow under the unsteady state condition. Using FVM code, material flow pattern near the tool boundary was analyzed to explain the weld strength difference between the weld by cylindrical pin and the weld by triangular pin, while the frictional energy concept using the FEM code had limitation to explain the weld strength difference.

  • PDF

Numerical Study of Wavy Taylor-Couette Flow(I) -Without an Axial Flow- (Wavy Taylor-Couette 유동에 대한 전산해석 (I) -축방향 유동이 없는 경우-)

  • Hwang, Jong-Yeon;Yang, Gyeong-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.697-704
    • /
    • 2001
  • The flow between two concentric cylinders, with the inner one rotating, is studied using numerical simulation. This study considers the identical flow geometry as in the experiments of Wereley and Lueptow[J. Fluid Mech., 364, 1998]. They carried out experiment using PIV to measure the velocity fields in a meridional plane of the annulus in detail. When Taylor number increases over the critical one, the flow instability caused by curved streamlines of the tangential flow induces Taylor vortices in the flow direction. As Taylor number further increases over another critical one, the steady Taylor vortices become unsteady and non-axisymmetrically wavy. The velocity vector fields obtained also show the same flow features found in the experiments of Wereley and Lueptow.

Control of the Pressure Oscillation in a Supersonic Cavity Flow Using a Sub-cavity (Sub-cavity를 이용한 초음속 공동유동의 압력진동 제어)

  • Lee Young-Ki;Jung Sung-Jae;Kim Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.310-313
    • /
    • 2006
  • The present study aims at investigating the effectiveness of a new passive cavity flow control technique, sub-cavity. The characteristics of cavity flow oscillation with the device are compared with those with other control techniques tested previously, including a triangular bump and blowing jet. In the computation, the three-dimensional, unsteady Navier-Stokes equations governing the supersonic cavity flow are solved based on an implicit finite volume scheme spatially and multi-stage Runge-Kutta scheme temporally. Large eddy simulation (LES) is carried out to properly predict the turbulent features of cavity flow. The present results show that the pressure oscillation near the downstream edge dominates overall time-dependent cavity pressure variations, and the amplitude of the pressure oscillation can be reduced in the presence of a sub-cavity.

  • PDF