• Title/Summary/Keyword: unsaturated polyester resin

Search Result 133, Processing Time 0.034 seconds

High Temperature Cure Behavior of Unsaturated Polyester Resin (불포화 폴리에스터 수치의 고온경화특성 연구)

  • 김형근;오제훈;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.38-41
    • /
    • 2000
  • High temperature cure characteristics of polyester resin systems were investigated by isothermal and dynamic differential scanning calorimetries. During isothermal scanning, the experimental procedure was modified to reduce the initial Boss of heat. no kinetic equation from the isothermal experiment was compared with that from the dynamic experiment.

  • PDF

An Experimental Study on Toughening of Unsaturated Polyester Mortar (불포화 폴리에스테르 모르터의 인성강화에 관한 실험 연구)

  • 김화중;박준철;윤명덕;윤요현;최영준
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.1115-1120
    • /
    • 2000
  • The purpose of this study is to investigate toughening of unsaturated polyester resin by addition of liquid rubber. In general, unsaturated polyester liquid has strong brittleness in spite of if high strength Therefore; it is difficult use polyurethane liquid rubber for the place where impact resistance is demanded. In this study, it was evaluated strength, impact resistance and fracture toughness by adding to polyurethane liquid rubber(0~25%). As a result, it was found that a tendency to be increase bearing impact and fracture toughness as polyurethane liquid rubber increased but strength was decreased.

Preparation and Characteristic of Sheet Molding Compound using Unsaturated Polyester Resin with Low Profile Agent of Polystyrene (저수축제 폴리스틸렌과 불포화 폴리에스터 수지를 사용한 Sheet Molding Compound 제조 및 특성)

  • Bae, Gi Boong;Lee, Sang Goo;Yoon, Hong Jin;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.588-593
    • /
    • 2012
  • Compatibility of unsaturated polyester (UP) and low profile agent (LPA) of polystyrene (PS) have been investigated under various mixing conditions such as the ratio of UP and LPA, mixing time, mixing temperature, and input amount of 2nd UP. It was possible to obtain mixture with small particle size and low phase separation in condition of 35 g of LPA, 25 g of 1st UP input, 5 min of mixing time, 1700 rpm of mixing speed, and 45 g of 2nd UP input. It was found that compatibility of UP and LPA was very sensitive to mixing conditions. In addition, molded sample using sheet molding compound prepared by stable mixing condition appeared good properties such as low water adsorption, low shrinkage, and high gloss.

Study on Porous Concrete According to Filler (채움재 종류에 따른 투수콘크리트 성능 연구)

  • Lho, Byeong-Choul;Choi, Kyu-Hyung;Kim, Jeong-Hoon;Cha, Kwang-Ill
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.741-744
    • /
    • 2006
  • The study focuses on the mixture of materials for the development of porous concrete with unsaturated polyester resin. The materials used in the mixture include the coarse aggregates unsaturated polyester resin as binder, calcium carbonate and sand as a filler. An experimental procedure has been carried out to select the best combination of the materials that satisfy both the required permeability and compressive strength.

  • PDF

Development of Elastic Composites Using Waste Tire Chip and Epoxy Resin - Focused on Strength and Durability - (폐타이어 칩 및 에폭시를 활용한 탄성 복합체의 개발 - 강도와 내구성을 중심으로 -)

  • Sung, Chan Yong;Noh, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • This study was performed to evaluate the strength and durability properties of modified epoxy composites with waste tire chip, recycled coarse aggregate, filler and modified epoxy to improve elongation and elasticity of epoxy. Additionally, for comparing to modified epoxy and unsaturated polyester resin as a binder, unsaturated polyester resin composites were developed in the same condition. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate size and binder content. Tests for the compressive and flexural strength, freezing and thawing and durability for 20 % sulfuric solution were performed. The compressive and flexural strength of modified epoxy composites were in the range of 34.9~61.6 MPa and 10.2~18.3 MPa at the curing 7 days, respectively. Also, the compressive and flexural strength of unsaturated polyester resin composites were in the range of 44.2~77.8 MPa and 11.3~20.8 MPa at the curing 7 days, respectively. After 300 cycles of freezing and thawing, weight decrease ratio and durability factor of modified epoxy composites were in the range of 0.8~1.9 % and 95~98, respectively. Accordingly, modified epoxy composites will greatly improve the durability of concrete.

Fabrication and Mechanical properties of Steel Fiber Reinforced Polyester Resin Composites Utilizing by-Products (Fly Ash) (산업부산물을 이용한 강섬유보강 폴리에스터 수지복합체의 제조 및 역학적 특성)

  • 박승범;윤의식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.35-40
    • /
    • 1992
  • Results of an experimental study on the manufacture, the workability and mechanical properties of steel fiber reinforced polyester resin composites utilizing industrial waste products are presented in this paper. The fly ash polyester resin composites using steel fiber, fly ash and calcium carbonic acid (CaCo3), unsaturated polyester resin, styrene monomer, cobalt octate and methyl ethyl ketone peroxide, fine and coarse aggregates are prepared with various filler~binder rations, binder rates and mixing conditions. As a test results, the workability of steel fiber reinforced polyester resin composites are considerably dropped with increasing fly ash-binder ratio and steel fiber volume. And compressive, flexural strength and bending toughness of the composites are remarkably improved with augmenting fiber contents.

  • PDF

An Experimental Study on Permeability in Elevation of Porous Concrete Using Unsaturated Polyester Resin (불포화 폴리에스터수지를 이용한 투수 콘크리트의 투수성 향상에 관한 실험적 연구)

  • Lho, Byeong-Cheol;Choi, Kyu-Hyung;Kim, Jeong-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.163-169
    • /
    • 2007
  • This study is focused on the proper mixture design of materials for the porous concrete with unsaturated polyester resin. The materials used in the mixture include the single-grade aggregates, unsaturated polyester resin as binder, and calcium carbonate as a filler. An experimental procedure has been carried out to select the best combination of the materials that satisfy both the required permeability and compressive strength. Various kinds of gravel size, the ratio of binder, and F/B ratios are tried to get proper mixture, and the permeability coefficient and compressive strength have been measured to find out the best combination of materials based on the proper Korean Standards. A promix design satisfied the standards of rainfall runoff reduction system with $3.5{\times}10^{-1}$ (cm/sec) of permeability, 34 % of porosity, 11 MPa of compressive strength can be obtained.

Preparation of Unsaturated Polyester-based Hybrid Gel-Coats Containing Urethane Acrylate and Their Coating Performance

  • Kim, Ji-Hee;Baek, Seung-Suk;Kim, Oh Young;Park, Dong Hyup;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.247-251
    • /
    • 2019
  • Two different urethane acrylates (mono-acrylate and di-acrylate) were used to prepare unsaturated polyester-based hybrid gel-coats. The physical properties and surface characteristics of these gel-coats were investigated on the basis of the content and type of urethane acrylate. The set-to-touch time increased and the physical properties (surface hardness and tensile strength) decreased with an increase in the urethane acrylate content. However, the type of urethane acrylate did not affect these parameters. It was found that the optimal urethane acrylate content for the application of unsaturated polyester-based hybrid gel-coats is ~10 wt%.

Workability and Strength Properties of MMA-Modified Polyester Polymer Concrete (MMA 개질 폴리머 콘크리트의 작업성 및 역학적 성질)

  • 연규석;주명기;유근우;최종윤;김남길
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.769-774
    • /
    • 2002
  • In this study, methyl methacrylate (MMA)- modified polyester polymer concrete, in which the MMA was added to the unsaturated polyester resin, was developed for improving the early-age strength and the workability of the conventional polymer concrete, binder of which was the unsaturated polyester resin. Then the fundamental properties of the polymer concrete such as workability and strength were surveyed. The experimental results showed that the workability was remarkably improved as the MMA contents increased, and the filler-binder ratio was turned out to be important factor for the workability. Slump prediction equation was derived by the regression analysis based on MMA content and filler-binder ratio. Furthermore, early-age strength was greater when the MMA content were increased in the range of 20-40 % but the strength rather showed a tendency of decrease when the MMA content was 50 %.

  • PDF

Fire Characteristics of Phenolic Resin for Interial Materials of Passenger Train (철도차량 내장재료용 페놀수지의 내열특성)

  • Lee, Cheul-Kyu;Lee, Duck-Hee;Jung, Woo-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.29-34
    • /
    • 2004
  • The time to ignition, heat release rate characteristics, and carbon monoxide yield of fiber reinforced and sandwich phenol resin were investigated with cone calorimeter. The fire characteristics of unsaturated polyester, mostly being applied to the existing passenger train, and phenolic resin were compared. DSC & TGA was used to monitor the degree of thermal decomposition and weight loss for the phenolic resin. According to the cone calorimeter data, the time to ignition was shorter, heat release rate, and CO yield was higher as the external heat flux increased. Under the same heat flux, the time to ignition of sandwich type phenolic resin was shorter than that of laminated. The result of comparison between unsaturated polyester and phenolic resin was that phenolic resin was shown to have better fire resistance than unsaturated polyester.