Purpose: The aim of this study was to determine the risk factors contributed to unplanned readmission to intensive care unit (ICU) and to investigate the prediction model of unplanned readmission. Methods: We retrospectively reviewed the electronic medical records which included the data of 3,903 patients who had discharged from ICUs in a university hospital in Seoul from January 2011 to April 2012. Results: The unplanned readmission rate was 4.8% (n=186). The nine variables were significantly different between the unplanned readmission and no readmission groups: age, clinical department, length of stay at 1st ICU, operation, use of ventilator during 24 hours a day, APACHE II score at ICU admission and discharge, direct nursing care hours and Glasgow coma scale total score at 1st ICU discharge. The clinical department, length of stay at 1st ICU, operation and APACHE II score at ICU admission were the significant predictors of unplanned ICU readmission. The predictive model's area under the curve was .802 (p<.001). Conclusion: We identified the risk factors and the prediction model associated with unplanned ICU readmission. Better patient assessment tools and knowledge about risk factors could contribute to reduce unplanned ICU readmission rate and mortality.
This study describes associated factors of readmission of 213 inpatients from an university hospital in Seoul. This retrospective study reviewed medical records of patients who discharged from a hospital stay for general diseases between 1 August 1995 and 31 October 1995, Cases were 68 discharge patients with an unplanned readmission within 30 days of discharge from an index stay. And the other cases are 145 patients who had more than two discharges and didn't have an unplanned readmission within 30 days. Logistic regression model was analyzed and the results were as follows; 1. duration of readmission, rate of unpayed, room, path, and risk of disease were more likely to be readmitted unexpectedly than the expected readmission patients. 2. early readmission, low risk condition group, and inadquateness of discharge plann for patients had unplanned radmissions rather than planned readmissions. Therefore, discharge planning education to health care provider is required and assessement of discharge planning should be evaluated. Readmissions are usually for related problems that arose during the original hopitaliztion and caused cost problems. Especially the unplanned readmissions are frequently preventable. Ultimately, models for readmissions can serve as a valuable clinical tool for target high-risk patients and older patients and with this kind of tools we can reduce hospital readmissions and maintain high-quality of inpatient care.
This study was designed to identify the risk factors of unplanned readmission in a university hospital. The six-month discharge information from January to June, 2000 in a tertiary university hospital was used as a source of data through the medical record and hospital information system. To increase the effect of comparison. the data were collected by sampling 192 couples (384 patients) of unplanned readmission group through the matching by its disease groups, sex, and age. The accuracy of prediction for unplanned readmission was analyzed by constructing the predicted model of unplanned readmission through the logistic regression. The study results are as follows. The conditional logistic regression analysis was performed with nine variables at the significance level 0.05 through univariate analysis including residence, days after discharge, initial admission route, previous admission, transfer to special care unite, hospital stay days, medical care expenses, special cares, and laboratory and imaging services. As a result, the closer the patients live in Seoul and Gyeong-in area (Odds ratio=2.529, p=0.003), the shorter the days after discharge was (Odds ratio=0.600, p=0.000), and the more frequent admission rate was (Odds ratio=2.317, p=0.004), the more unplanned readmission was resulted. Also, the accuracy of prediction for data classification of this regression model showed $70.3\%$(032+83/306).
Purpose: This study aimed to assign weights for subscales and items of the Post-Intensive Care Syndrome questionnaire and suggest optimal cut-off values for screening unplanned hospital readmissions of critical care survivors. Methods: Seventeen experts participated in an analytic hierarchy process for weight assignment. Participants for cut-off analysis were 240 survivors who had been admitted to intensive care units for more than 48 hours in three cities in Korea. We assessed participants using the 18-item Post-Intensive Care Syndrome questionnaire, generated receiver operating characteristic curves, and analysed cut-off values for unplanned readmission based on sensitivity, specificity, and positive likelihood ratios. Results: Cognitive, physical, and mental subscale weights were 1.13, 0.95, and 0.92, respectively. Incidence of unplanned readmission was 25.4%. Optimal cut-off values were 23.00 for raw scores and 23.73 for weighted scores (total score 54.00), with an area of under the curve (AUC) of .933 and .929, respectively. There was no significant difference in accuracy for original and weighted scores. Conclusion: The optimal cut-off value accuracy is excellent for screening of unplanned readmissions. We recommend that nurses use the Post-Intensive Care Syndrome Questionnaire to screen for readmission risk or evaluating relevant interventions for critical care survivors.
Background : Because unplanned readmissions to intensive care unit(ICU)might be related with undesirable patient outcomes, we investigated the pattern of and reason for unplanned ICU readmission to provide baseline data for reducing unplanned returns to ICU. Methods : The subjects included all patients who readmitted to ICU during the same hospitalization at a tertiary referral hospital between January 1st and June 30th 2002. Quality improvement(QI) nurse collected the data through medical records and a medical director reviewed the data collected. Results : 1) The average unplanned ICU readmission rate was 5.6%(gastroenterology 14.6%, pediatrics 12.7%, pulmonology 11.9%, neurosurgery 6.3%, general surgery 5.3%, chest surgery 3.9%, and cardiology 3.3%). 2) Among the unplanned readmissions, more than 50% of cases were from patients older than 60 years, and the main categories of diagnose at hospital admission were neurologic disease(29.9%) and cardiovascular disease(27.6%). 3) Of unplanned ICU readmissions, 41.8% had recurrence of the initial problems, 44.8% had occurrence of new problems. And 9.7% required post-operative care after unplanned operations. 4) The most common cause responsible for unplanned ICU readmission were respiratory problem(38.3%) and cardiovascular problem(14.3%). 5) About 40% of unplanned ICU readmission occurred within 3 days after ICU discharge. 6) Average length of stay of the readmitted patients to ICUs were much longer than that of non-readmitted patients. 7) Hospital mortality rate was much higher for unplanned ICU readmitted patients(23.6%) than for non-readmitted patients(1.5%) (P<0.001). Conclusions : This study showed that the unplanned ICU readmitted patients had poor outcomes(high morality and increased length of stay). In addition study results suggest that more attention should be paid to patients in ICU with poor respiratory function or elderly patients, and careful clinical decisions are required at discharged from ICU to general ward.
Purpose : This study was performed to identify the influencing factors of unplanned intensive care unit (ICU) readmission. Methods : The study adopted a Rretrospective case control cohort design. Data were collected from the electronic medical records of 844 patients who had been discharged from the ICUs of a university hospital in Incheon from June 2014 to December 2014. Results : The study found the unplanned ICU readmission rate was to be 6.4%(n=54). From the univariate analysis revealed that, major symptoms at $1^{st}$ ICU admission, severity at $1^{st}$ ICU admission (CPSCS and APACHE II), duration of applying ventilator application during $1^{st}$ ICU admission, severity at $1^{st}$ discharge from ICU (CPSCS, APACHE II, and GCS), and application of $FiO_2$ with oxygen therapy, implementation of sputum expectoration methods, and length of stay of ICU at $1^{st}$ ICU discharge were appeared to be significant; further, decision tree model analysis revealed that while only 4 variables (sputum expectoration methods, length of stay of ICU, $FiO_2$ with oxygen therapy at $1^{st}$ ICU discharge, and major symptoms at $1^{st}$ ICU admission) were shown to be significant. Conclusions : Since sputum expectoration method was the most important factor to predictor of unplanned ICU readmission, a assessment tool for the patients' capability of sputum expectoration needs to should be developed and implemented, and standardized ICU discharge criteria, including the factors identified from the by empirical evidences, might should be developed to decrease the unplanned ICU readmission rate.
Jain, Umang;Salgado, Christopher;Mioton, Lauren;Rambachan, Aksharananda;Kim, John Y.S.
Archives of Plastic Surgery
/
제41권2호
/
pp.116-121
/
2014
Background Understanding risk factors that increase readmission rates may help enhance patient education and set system-wide expectations. We aimed to provide benchmark data on causes and predictors of readmission following inpatient plastic surgery. Methods The 2011 National Surgical Quality Improvement Program dataset was reviewed for patients with both "Plastics" as their recorded surgical specialty and inpatient status. Readmission was tracked through the "Unplanned Readmission" variable. Patient characteristics and outcomes were compared using chi-squared analysis and Student's t-tests for categorical and continuous variables, respectively. Multivariate regression analysis was used for identifying predictors of readmission. Results A total of 3,671 inpatient plastic surgery patients were included. The unplanned readmission rate was 7.11%. Multivariate regression analysis revealed a history of chronic obstructive pulmonary disease (COPD) (odds ratio [OR], 2.01; confidence interval [CI], 1.12- 3.60; P=0.020), previous percutaneous coronary intervention (PCI) (OR, 2.69; CI, 1.21-5.97; P=0.015), hypertension requiring medication (OR, 1.65; CI, 1.22-2.24; P<0.001), bleeding disorders (OR, 1.70; CI, 1.01-2.87; P=0.046), American Society of Anesthesiologists (ASA) class 3 or 4 (OR, 1.57; CI, 1.15-2.15; P=0.004), and obesity (body mass index ${\geq}30$) (OR, 1.43; CI, 1.09-1.88, P=0.011) to be significant predictors of readmission. Conclusions Inpatient plastic surgery has an associated 7.11% unplanned readmission rate. History of COPD, previous PCI, hypertension, ASA class 3 or 4, bleeding disorders, and obesity all proved to be significant risk factors for readmission. These findings will help to benchmark inpatient readmission rates and manage patient and hospital system expectations.
Objective : To determine demographic, clinical, health care utilization factors predicting unplanned readmission(within 28 days) to the hospital. Methods : A case-control study was conducted from January to December 2009. Multiple logistic regression was used to examine risk factors for readmission. 180 patients who had been readmitted within 28 days and 1,784 controls were recruited from an university hospital in Seoul. Results : Six risk factors associated with readmission risk were identified and include mail sex, medical service rather than surgical service, number of comorbid diseases, type of patient's room, lenth of stay, number of admissions in the prior 12 months. Conclusions : One of the association with readmission risk identified was the number of hospital admissions in the previous year. This factor may be the only risk factor necessary for assessing prior risk and has the additional advantage of being easily accessible from computerized medical records without requiring other medical record review. This risk factor may be useful in identifying a group at high readmission risk, which could be targeted in intervention studies. Multiple risk factors intervention approach should be considered in designing future prevention strategies.
본 연구의 목적은 심장판막 수술 받은 환자를 대상으로 전자의무기록 검토를 통해 퇴원 후 30일 내 비계획적 재입원군의 특성과, 재입원 영향요인을 규명하고자 하는 후향적 조사연구이다. 대상자는 S시에 위치한 상급종합병원에서 2018년 1월부터 2019년 8월까지 심장판막수술을 받고 포함기준에 맞는 퇴원환자 423명이었다. 비계획적 재입원 대상자는 총 48명(11.3%)이었고, 그 원인은 심방세동 13건 (27.1%)과 수술부위 통증이 13건(27.1%)으로 가장 많았고, 와파린의 치료농도가 안 맞는 경우 10건 (20.8%), 전신 위약감 7건 (14.6%). 저혈압 5건 (10.4%). 심낭삼출 4건 (8.3%), 수술상처 감염 3건 (6.3%), 출혈 3건 (6.3%), 고열 3건 (6.3%), 뇌경색 1건(2.1%)이었다. 재입원에 영향을 미치는 변수는 암의 병력 (OR=2.60, 95% CI 1.13-6.03, p=.025), 퇴원 후 거주지는 병원이 아닌 집으로 간 경우 (OR=2.91, 95% CI 1.33-6.36, p=.008), 판막수술종류로서 승모판막성형술이 대동맥판막 치환술보다 재입원률이 높았다(OR=1.21, 95% CI 1.21-4.98, p=.012). 비계획적 재입원 감소를 위해 환자와 돌봄 제공자에게 퇴원 전 만성질환병력관리와 재입원의 위험 요인을 미리 사정하고 병원 방문할 수 있도록 하는 개별화된 교육프로그램이 필요하다.
Purpose: This study identifies the factors influencing unplanned readmissions among participants of the medical aid community care pilot program. Methods: This descriptive study analyzed data from 1,013 participants in a medical aid community care pilot program. Data were analyzed using multiple logistic regression analysis. Results: The presence of mental illness, injury-related conditions, long-term care grades, and activities of daily living scores are key factors influencing the likelihood of readmission. In particular, the presence of a mental disorder or an injury-related condition increased the probability of readmission, whereas individuals with long-term care grades 1~2 showed a decreased likelihood of readmission. Conclusion: This study emphasizes the importance of enhancing the management of mental and injury-related conditions, effective utilization of long-term care services, and improvement of ADL scores to reduce readmission. These findings offer crucial insights for enhancing the efficiency of home medical care benefit programs and sustainable expansion of services.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.