• Title/Summary/Keyword: unmanned aviation vehicle

Search Result 79, Processing Time 0.024 seconds

Full composites hydrogen fuel cells unmanned aerial vehicle with telescopic boom

  • Carrera, E.;Verrastro, M.;Boretti, Alberto
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.1
    • /
    • pp.17-37
    • /
    • 2022
  • This paper discusses an improved unmanned aerial vehicle, UAV, configuration characterized by telescopic booms to optimize the flight mechanics and fuel consumption of the aircraft at various loading/flight conditions.The starting point consists of a full-composite smaller UAV which was derived by a general aviation ultralight motorized aircraft ULM. The present design, named ToBoFlex, extends the two-booms configuration to a three tons aircraft. To adapt the design to needs relevant to different applications, new solutions were proposed in aerodynamic fields and materials and structural areas. Different structural solutions were reported. To optimize aircraft endurance, the innovative concept of Telescopic Tail Boom was considered along with two different tails architecture. A new structural configuration of the fuselage was proposed. Further consideration of hydrogen fuel cell electric propulsion is now being studied in collaboration between the Polytechnic of Turin and Prince Mohammad Bin Fahd University which could be the starting point of future investigations.

A Study on Operability of Smart UAV in the NAS (스마트무인기의 공역체계 내 운용에 관한 연구)

  • Kim, Do-Hyun;Kim, Joong-Wook
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.1
    • /
    • pp.101-107
    • /
    • 2011
  • A UAV is defined as a powered, aerial vehicle that does not carry a human operator, and can fly autonomously or be piloted remotely. UAV operations have increased dramatically during the past several years in both the public and private sectors. The utilization of UAV and the activities of diverse widening, now the challenge was how to operate and integrate UAV safely in the NAS. The purpose of this study is to look around the trend for operability of Smart UAV in the NAS and to provide its implications and the future direction of integrated operating airspace focusing on U.S. where R&D and demand of UAV are the most in the world.

A Study on the infringement of privacy of unmanned aircraft : Focusing on the analysis of legislation and US policy (무인항공기의 사생활 침해에 대한 법적 대응 : 미국 정책.입법안 분석을 중심으로)

  • Kim, Sun-Ihee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.2
    • /
    • pp.135-161
    • /
    • 2014
  • An unmanned aerial vehicle (UAV), commonly known as a drone and also referred to as an unpiloted aerial vehicle and a remotely piloted aircraft (RPA) by the International Civil Aviation Organization (ICAO), is an aircraft without a human pilot aboard. ICAO classify unmanned aircraft into two types under Circular 328 AN/190. Unmanned aircraft, which is the core of the development of the aviation industry. However, there are also elements of the legal dispute. Unmanned aircraft are manufactured in small size, it is possible to shoot a record peripheral routes stored in high-performance cameras and sensors without the consent of the citizens, there is a risk of invasion of privacy. In addition, the occurrence of the people of invasion of privacy is expected to use of civilian unmanned aircraft. If the exposure of private life that people did not want for unmanned aircraft has occurred, may occur liability to the operator of unmanned aircraft, this is a factor to be taken into account for the development of unmanned aircraft industry. In the United States, which is currently led by the unmanned aircraft industry, policy related to unmanned aircraft, invasion of privacy is under development, is preparing an efficient measures making. Unmanned aircraft special law has not been enforced. So there is a need for legal measures based on infringement of privacy by the unmanned aircraft. US was presented Privacy Protection Act of unmanned aircraft (draft). However Korea has many laws have been enacted, to enact a new law, but will be able to harm the legal stability, there is a need for the enactment of laws for public safety of life. Although in force Personal Information Protection Law, unmanned aerospace, when the invasion of privacy occurs, it is difficult to apply the Personal Information Protection Law. So, it was presented a privacy protection bill with infringement of privacy of unmanned aircraft in the reference US legislation and the Personal Information Protection Act.

A Study on Improvement of UAV Pilot Licensing System (무인비행장치 조종 자격증명제도 개선에 관한 고찰)

  • Park, Wontae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.1
    • /
    • pp.79-84
    • /
    • 2017
  • This study suggests the ways of improving the training and licensing system of unmanned aerial vehicles (UAVs), which are drawing attention as a future growth industry, through interviews with domestic experts and examples from advanced countries. In order to improve the system, it was suggested to establish a clear concept about unmanned aerial vehicle pilot, to implement a system to obtain and maintain the UAV pilot license, to develop and supply standard textbooks for acquiring certification, and to prepare certification standards for flight simulators.

Unmanned Drones flying device and the Aviation Act and other local law to limit problems (무인비행장치 드론과 항공법 등 국내 설정법에 대한 문제점 고찰)

  • Jeong, Soonchae;Mariappan, Vinayagam;Cha, Jaesang
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.1
    • /
    • pp.58-63
    • /
    • 2017
  • In this paper, Easily the nation's rapidly expanding and the popularization of unmanned aerial vehicle drone can fly. But in Korea, divided country to cameras lately, and national characteristics and constraints in many relevant laws and in particular, address public concerns.Appears, along with many. Unmanned aircraft drone called industrial revolution in the sky and pitfalls to look at the domestic law in relation to the situation and to find a way to resolve them.

A Performance Analysis of 60 Horsepower Vertical Mounted Gasoline Engine Applied to Multi-copter of Unmanned Aircraft Vehicle (무인 멀티콥터에 적용된 60마력급 직립형 가솔린 엔진의 성능 분석)

  • RYUNKYUNG KIM;KYUNGWAN KO;SUNGGI KWON;GYECHOON PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.758-766
    • /
    • 2023
  • Multi-copter of unmanned aerial vehicle (UAV) was initially developed as strategic technology in the only military field, but it is developing into an industrial field with a wide range of applications in the civil sector based on the development and convergence of aviation technology and information and communication technology. Currently, the degree of utilization of multi-copter is increasing in various industries for the purpose of performing classic tactical missions, logistics transportation, farm management, internet supply, video filming, weather management, life-saving, etc, and active technology development responding to market demand. Existing commercial multi-copter mainly use an electric energy propulsion system consisting of an electric battery and a brushless direct current (BLDC) motor. It is the limitations for usage in the flying time (up to 20 minutes) and payload (less than 20 kg). this study aims to overcome these limitations and expand the commercialization of engine-powered multi-copter of UAV in various industries in the futures.

The Development Trend of a VTOL MAV with a Ducted Propellant (덕티드 추진체를 사용한 수직 이·착륙 초소형 무인 항공기 개발 동향)

  • Kim, JinWan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.1
    • /
    • pp.68-73
    • /
    • 2020
  • This purpose of this paper was to review the development trend of the VTOL MAVs with a ducted propellant that can fly like the VTOL at intermediate and high speeds, hovering, landing, and lifting off vertically over urban areas, warships, bridges, and mountainous terrains. The MAV differs in flight characteristics from helicopters and fixed wings in many respects. In addition to enhancing thrust, the duct protects personnel from accidental contact with the spinning rotor. The purpose of the U.S. Army FCS and DARPA's OAV program is spurring development of a the VTOL ducted MAV. Today's MAVs are equipped with video/infrared cameras to hover-and-stare at enemies hidden behind forests and hills for approximately one hour surveillance and reconnaissance. Class-I is a VTOL ducted MAV developed in size and weight that individual soldiers can store in their backpacks. Class-II is the development of an organic VTOL ducted fan MAV with twice the operating time and a wider range of flight than Class-I. MAVs will need to develop to perch-and-stare technology for lengthy operation on the current hover-and-stare. The near future OAV's concept is to expand its mission capability and efficiency with a joint operation that automatically lifts-off, lands, refuels, and recharges on the vehicle's landing pad while the manned-unmanned ground vehicle is in operation. A ducted MAV needs the development of highly accurate relative position technology using low cost and small GPS for automatic lift-off and landing on the landing pad. There is also a need to develop a common command and control architecture that enables the cooperative operation of organisms between a VTOL ducted MAV and a manned-unmanned ground vehicle.

Design Update of Transition Scheduler for Smart UAV (스마트 무인기의 천이 스케줄러 설계개선)

  • Kang, Y.S.;Yoo, C.S.;Kim, Y.S.;An, S.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.2
    • /
    • pp.14-26
    • /
    • 2005
  • A tilt-rotor aircraft has various flight modes : helicopter, airplane, and conversion. Each of flight mode has unique and nonlinear flight characteristics. Therefore the gain schedules for whole flight envelope are required for effective flight performance. This paper proposes collective, flap, and nacelle angle scheduler for whole flight envelope of the Smart UAV(Unmanned Air Vehicle) based on CAMRAD(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) II analysis results. The scheduler designs are improved so that the pitch attitude angle of helicopter mode was minimized. The range of scheduler are reduced inside of engine performance limits. The conversion corridor and rotor governor are suggested also.

  • PDF

A Study on Performance Comparison of COTS Operating Systems for a Mission Computer Using UAV Collision Avoidance Algorithm (무인기 충돌회피 알고리즘을 이용한 임무컴퓨터용 상용기성품 운영체계 성능 비교에 대한 연구)

  • Yang, Jun-Mo;Jeon, Yu-Ji;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.24 no.4
    • /
    • pp.6-11
    • /
    • 2016
  • There has been an increase in the number of researches on the segment for commercialization after developing avionics systems. In this paper, we have applied a commercial off-the-shelf(COTS) operating systems in an aircraft mission computer. We used UAV collision avoidance algorithms to compare the performance of COTS operating systems. The UAV collision avoidance algorithms were tested on different operating systems to compare the performances of the operating systems. The measured parameters are memory usage and processing time. We have verified that the UAV collision avoidance algorithms worked successfully and compared the performance of each operating system.

Disturbance Observer based PID Controller for robustness enhancement of UAVs under the presence of wind disturbance (무인항공기의 내풍성 강화를 위한 제어기의 외란관측기 연구)

  • Oh, Seungjo;Lee, Dongjin
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.61-67
    • /
    • 2018
  • This paper presents a method to apply disturbance observer to PID controller for robustness enhancement of UAVs. The system uncertainties and disturbances bring adverse effects on performance and stability of UAVs. In this paper, we estimate the acceleration disturbances using nonlinear disturbance observer, then compensate disturbances with composite controller. By employing nonlinear disturbance observer and composite controller, we have better performance and robustness than conventional PID controller. The asymptotical stability of nonlinear disturbance observer is presented through theoretical analysis. The estimation performance of nonlinear disturbance observer is evaluated by numerical simulation. And performance of disturbance observer based PID controller is evaluated by comparing the performance with conventional PID controller.