• 제목/요약/키워드: unknown-input

Search Result 402, Processing Time 0.027 seconds

Robust Fault Detection Based on Aero Engine LPV Model

  • Linfeng, Gou;Xin, Wang;Liang, Chen
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.35-38
    • /
    • 2008
  • This paper develops an aero engine LPV mathematical model to exactly describe aero engine dynamic process characteristics, eliminate the effect of modeling error. Design FDF with eigenstructure assignment. The simulation results of turbofan engine control system sensor fault show that this method has good performance in focusing discrimination in fault signal with modeling eror, enhancing the robustness to unknown input, detecting accuracy is high and satisfiying real-time requirement.

  • PDF

Probabilistic analysis of structural pounding considering soil-structure interaction

  • Naeej, Mojtaba;Amiri, Javad Vaseghi
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.289-304
    • /
    • 2022
  • During strong ground motions, adjacent structures with insufficient separation distances collide with each other causing considerable architectural and structural damage or collapse of the whole structure. Generally, existing design procedures for determining the separation distance between adjacent buildings subjected to structural pounding are based on approximations of the buildings' peak relative displacement. These procedures are based on unknown safety levels. This paper attempts to evaluate the influence of foundation flexibility on the structural seismic response by considering the variability in the system and uncertainties in the ground motion characteristics through comprehensive numerical simulations. Actually, the aim of this study is to evaluate the influence of foundation flexibility on probabilistic evaluation of structural pounding. A Hertz-damp pounding force model has been considered in order to effectively capture impact forces during collisions. In total, 5.25 million time-history analyses were performed over the adopted models using an ensemble of 25 ground motions as seismic input within OpenSees software. The results of the study indicate that the soil-structure interaction significantly influences the pounding-involved responses of adjacent structures during earthquakes and generally increases the pounding probability.

A study on control of electrohydraulic servosystem with using model reference adaptive contorl theory (모델기준형 적응제어를 이용한 전기유압 서보계의 제어에 관한 연구)

  • Kim, K.H.;Yun, I.R.;PARK, J.B.;Kim, J.K.;Yum, M.O.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.92-99
    • /
    • 1997
  • A model reference adaptive control(MRAC) theory is very useful for controlling a plant of which the parameters are unknown or vary during operation usint only input-output signal of plant. In this study, 2' nd order discreter time MRAC controller is designed for an electrohydraulic position control system which is represented with nonlinear mathematical model and the least square method is adopted for the para-meter adjustment law. This control algorthm is applied to the position control of electrohydraulic servosystem through computer simulation and the effect of the change of load, sampling time upon the performance following reference model and upon the performance of estimating plant parameters are examined.

  • PDF

Automatic Berthing Finite-time Control Considering Transmission Load Reduction

  • Liu Yang;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.168-169
    • /
    • 2022
  • In this study, we investigates the auto-berthing problem for the underactuated surface vessel in the presence of constraints of dynamic uncertainties, finite time, transmission load, and environmental disturbance. A novel control scheme is proposed by fusing the finite time control technology and the event-triggered input algorithm. In the algorithm, differential homeomorphism coordinate the transformation is used to solve the problem of underactuation. Then, we apply the finite time technology and event triggered to save the time of the berthing vessel and relieve transmission burden between the controller and the vessel respectively. Moreover, a radial basis function network is used to approximate unknown nonlinear functions, and minimum learning parameters are introduced to lessen the computational complexity. A sufficient effort has been made to verify the stability of the closed-loop system based on the Lyapunov stability theory. Finally, simulation results display the effectiveness of the proposed scheme.

  • PDF

Lossless Image Compression Using Block-Adaptive Context Tree Weighting (블록 적응적인 Context Tree Weighting을 이용한 무손실 영상 압축)

  • Oh, Eun-ju;Cho, Hyun-ji;Yoo, Hoon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.43-49
    • /
    • 2020
  • This paper proposes a lossless image compression method based on arithmetic coding using block-adaptive Context Tree Weighting. The CTW method predicts and compresses the input data bit by bit. Also, it can achieve a desirable coding distribution for tree sources with an unknown model and unknown parameters. This paper suggests the method to enhance the compression rate about image data, especially aerial and satellite images that require lossless compression. The value of aerial and satellite images is significant. Also, the size of their images is huger than common images. But, existed methods have difficulties to compress these data. For these reasons, this paper shows the experiment to prove a higher compression rate when using the CTW method with divided images than when using the same method with non-divided images. The experimental results indicate that the proposed method is more effective when compressing the divided images.

Control Signal Reconstruction of Non-Linear Systems with Noise Using Neural Networks (신경망을 이용한 비선형 잡음계의 제어신호 복원)

  • 안영환
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.849-855
    • /
    • 1999
  • Neural Networks have shown potential to become an attractive alternative to classic methods for identification and control of non-linear dynamic systems. The purpose of this paper is to present an application of neural networks, that is a neural reconstruction of the input signal of a non-linear unknown system. This basic methodology could be used for practical purpose in several engineering fields. Clearly applications of the proposed scheme can be of interest for physical systems where a complete network of sensors measuring system inputs is not available. It should also be emphasized that the application of the reconstruction scheme is of little or no interest when the analyzed system works and operates at nominal conditions. In fact, only when failures and/or system anomailes occur, leasing to performance degradation and/or shutdown, the application of this scheme is of interest. The paper presents the results of the methodology applied to unknown non-linear dynamic systems and the robustness of the scheme to white and colored system noise was evaluated.

  • PDF

Speaker-adaptive Word Recognition Using Mapped Membership Function (사상멤버쉽함수에 의한 화자적응 단어인식)

  • Lee, Ki-Yeong;Choi, Kap-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.3
    • /
    • pp.40-52
    • /
    • 1992
  • In this paper, we propose the speaker adaptive word recognition method using a mapped membership function, in order to absorb a fluctuation owing to personal difference which is a problem of speaker independent speech recognition. In the training procedure of this method, the mapped membership function is made with the fuzzy theory introducded into a mapped codebook, between an unknown speaker's spectrum pattern and a standard speaker's one. In the recognition procedure, an input pattern of an unknown speaker is reconstructed to the pattern which is adapted to that of a standard speaker by the mapped membership function. To show the validity of this method, word recognition experiments are carried out using 28 DDD area names. The recognition rate of the conventional speaker-adaptive method using a mapped codebook by VQ is 64.9[%], and that made by a fuzzy VQ is 76.2[%]. Throughout the experiment using a mapped membership function, we can achieve 95.4[%] recognition rate. This shows that our proposed method is more excellent in recognition performance. Moreover, this method doesn't need an iterative training procedure to make the mapped membership function, and memory capacity and computation requirements for this method are reduced to 1/30 and 1/500 time of those for the conventional method using a mapped codebook, respectively.

  • PDF

FIGURE ALPHABET HYPOTHESIS INSPIRED NEURAL NETWORK RECOGNITION MODEL

  • Ohira, Ryoji;Saiki, Kenji;Nagao, Tomoharu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.547-550
    • /
    • 2009
  • The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.

  • PDF

CHART PARSER FOR ILL-FORMED INPUT SENTENCES (잘못 형성된 입력문장에 대한 CHART PARSER)

  • KyonghoMin
    • Korean Journal of Cognitive Science
    • /
    • v.4 no.1
    • /
    • pp.177-212
    • /
    • 1993
  • My research is based on the parser for ill-formed input by Mellish in a paper in ACL 27th meeting Proceedings. 1989. My system is composed of two parsers:WFCP and IFCP. When WFCP fails to give the parse tree for the input sentence, the sentence is identified as ill-formed and is parsed by IFCP for error detection and recovery at the syntactic level. My system is indendent of grammatical rules. It does not take into account semantic ill-formedness. My system uses a grammar composed of 25 context-free rules. My system consistes of two major parsing strategies:top-down expection and bottem-up satisfaction. With top-down expectation. rules are retrieved under the inference condition and expaned by inactive arcs. When doing bottom-up parsing. my parser used two modes:Left-Right parsing and Right-to-Left parsing. My system repairs errors sucessfully when the input contains an omitted word or an unknown word substitued for a valid word. Left- corner and right-corner errors are more easily detected and repaired than ill-formed senteces where the error is in teh middle. The deviance note. with repair details, is kept in new inactive arcs which are generated by the error correction procedure. The implementation of my system is quite different from Mellish's. When rules are invoked. my system invokes all rules with minimal inference. My bottom up parsing strategy uses Left-to-Right mode and Right-to-Left mode. My system is bottom-up-parsing-oriented like the chart parser. Errors are repaired in two ways:using top-down hypothesis, and using Need-Chart which keeps the information of expectation and complection of expanded goals by rules. To reduce the number of top-down cycles. all rules are invoked simultaneously and this invocation information is kept in Need-Chart. This idea will be extended for the implementation of multiple error recovery system.

An Estimator Design of Turning Acceleration for Tracking a Maneuvering Target using Curvature (곡률을 이용한 기동표적 추적용 회전가속도 추정기 설계)

  • Joo, Jae-Seok;Park, Je-Hong;Lim, Sang-Seok
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.162-170
    • /
    • 2000
  • Maneuvering targets are difficult for the Kalman filter to track since the target model of tracking filter might not fit the real target trajectory and the statistical characteristics of the target maneuver are unknown in advance. In order to track such a wildly maneuvering target, several schemes had been proposed and improved the tracking performance in some extent. In this paper a Kalman filter-based scheme is proposed for maneuvering target tracking. The proposed scheme estimates the target acceleration input vector directly from the feature of maneuvering target trajectories and updates the simple Kalman tracker by use of the acceleration estimates. Simulation results for various target profiles are analyzed for a comparison of the performances of our proposed scheme with that of conventional trackers.

  • PDF