• Title/Summary/Keyword: unknown loading

Search Result 63, Processing Time 0.024 seconds

Treatment of Distillery Wastewater Using a Thermophilic High-Rate Hybrid Anaerobic Reactor in Industrial Scale

  • Nam, Ki-Du;Chung, In;Young, James C.;Park, Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.737-743
    • /
    • 1999
  • A conventional thermophilic anaerobic digester was converted into a thermophilic high-rate hybrid anaerobic reactor (THAR) for treating distillery wastewater. The THAR has been operating successfully since May 1995 at a loading rate of 5.45 to $11.52{\;}kg/\textrm{m}^3/d$ (maximum of 15.02). The THAR has demonstrated a soluble Chemical Oxygen Demand (sCOD) removal efficiency of 85 to 91% and a total COD (tCOD) removal efficiency of as much as 72 to 84%. Product gas had a methane content of 59 to 68%. The tCOD removal rates were 4.31 to 5.43, 6.26 to 6.89, and 9.03 to $9.78kg{\;}tCOD/\textrm{m}^3/d$ for tapioca, com, and naked-barley wastewater, respectively. The sCOD removal rates ranged from 3.75 to 4.79,3.28 to 4.89, and 5.57 to 6.21kg $sCOD/\textrm{m}^3/d$ for tapioca, com, and naked-barley wastewater, respectively. There were unknown substances in a naked-barley distillery wastewater that were identified as being toxic for microorganisms. However, the THAR treated naked-barley wastewater continuously for 26 days, operating at an average tCOD loading of $11.08{\;}kg/\textrm{m}^3/d$without any signs of deterioration in either COD removal efficiency or gas production rate. During this period, the average removal efficiencies of tCOD and sCOD were 84% and 91%, respectively, and the gas production rate averaged 6.61 to $7.57{\;}\textrm{m}^3/\textrm{m}^3$ reactor/d which produced 0.57 to $0.69{\;}\textrm{m}^3{\;}biogas/kg{\;}tCOD_{rem}$. From tapioca and com wastewater, the reactor showed an average gas production rate of 3.18 to 3.46 and 4.91 to $5.22{\;}\textrm{m}^3/\textrm{m}^3$ reactor/d which produced 0.53 to 0.69 and 0.62 to $0.71{\;}\textrm{m}^3/kg{\;}tCOD_{rem}$, respectively.

  • PDF

Wind resistance performance of a continuous welding stainless steel roof under static ultimate wind loading with testing and simulation methods

  • Wang, Dayang;Zhao, Zhendong;Ou, Tong;Xin, Zhiyong;Wang, Mingming;Zhang, Yongshan
    • Wind and Structures
    • /
    • v.32 no.1
    • /
    • pp.55-69
    • /
    • 2021
  • Ultrapure ferritic stainless steel provides a new generation of long-span metal roof systems with continuous welding technology, which exhibits many unknown behaviors during wind excitation. This study focuses on the wind-resistant capacity of a new continuous welding stainless steel roof (CWSSR) system. Full-scale testing on the welding joints and the CWSSR system is performed under uniaxial tension and static ultimate wind uplift loadings, respectively. A finite element model is developed with mesh refinement optimization and is further validated with the testing results, which provides a reliable way of investigating the parameter effect on the wind-induced structural responses, namely, the width and thickness of the roof sheeting and welding height. Research results show that the CWSSR system has predominant wind-resistant performance and can bear an ultimate wind uplift loading of 10.4 kPa without observable failures. The welding joints achieve equivalent mechanical behaviors as those of base material is produced with the current of 65 A. Independent structural responses can be found for the roof sheeting of the CWSSR system, and the maximum displacement appears at the middle of the roof sheeting, while the maximum stress appears at the connection supports between the roof sheeting with a significant stress concentration effect. The responses of the CWSSR system are greatly influenced by the width and thickness of the roof sheeting but are less influenced by the welding height.

A quasi 3D solution for thermodynamic response of FG sandwich plates lying on variable elastic foundation with arbitrary boundary conditions

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Sekkal, Mohamed;Benyoucef, Samir;Selim, Mahmoud M.;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.873-886
    • /
    • 2021
  • In this paper, an analytical solution for thermodynamic response of functionally graded (FG) sandwich plates resting on variable elastic foundation is performed by using a quasi 3D shear deformation plate theory. The displacement field used in the present study contains undetermined integral terms and involves only four unknown functions with including stretching effect. The FG sandwich plate is considered to be subject to a time harmonic sinusoidal temperature field across its thickness with any combined boundary conditions. Equations of motion are derived from Hamilton's principle. The numerical results are compared with the existing results of quasi-3D shear deformation theories and an excellent agreement is observed. Several numerical examples for fundamental frequency, deflection, stress and variable elastic foundation parameter's analysis of FG sandwich plates are presented and discussed considering different material gradients, layer thickness ratios, thickness-to-length ratios and boundary conditions. The results of the present study reveal that the nature of the elastic foundation, the boundary conditions and the thermodynamic loading affect the response of the FG plate especially in the case of a thick plate.

Landing with Visual Control Reveals Limb Control for Intrinsic Stability

  • Lee, Aeri;Hyun, Seunghyun;Ryew, Checheong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.226-232
    • /
    • 2020
  • Repetition of landing with visual control in sports and training is common, yet it remains unknown how landing with visual control affects postural stability and lower limb kinetics. The purpose of this study was to test the hypothesis that landing with visual control will influence on lower limb control for intrinsic dynamic postural stability. Kinematics and kinetics variables were recorded automatically when all participants (n=10, mean age: 22.00±1.63 years, mean heights: 177.27±5.45 cm, mean mass: 73.36±2.80 kg) performed drop landings from 30 cm platform. Visual control showed higher medial-lateral force, peak vertical force, loading rate than visual information condition. This was resulted from more stiff leg and less time to peak vertical force in visual control condition. Leg stiffness may decrease due to increase of perturbation of vertical center of gravity, but landing strategy that decreases impulse force was shifted in visual control condition during drop landing. These mechanism explains why rate of injury increase.

Closed-form fragility analysis of the steel moment resisting frames

  • Kia, M.;Banazadeh, M.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.93-107
    • /
    • 2016
  • Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of regression-based equations which are capable of directly estimating unknown statistical characteristics of the model parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression inference is employed, when these relations are developed. The developed demand model is then employed in a Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by comparison with the results directly obtained from Incremental Dynamic analysis.

EMERGING POSSIBILITIES FOR NIRS TO CONTRIBUTO TO ENVIRONMENTAL ANALYSIS

  • Malley, Diane
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1071-1071
    • /
    • 2001
  • Near-infrared spectroscopy (NIRS) is potentially a powerful and revolutionary technology for environmental analysis. It is supported by a large body of scientific and experiential knowledge. The instrumentation is well-developed, with easy-to-use, highly dependable instruments, but at the same time it is still developing, particularly with the production of more portable and rapid instruments, and more powerful software. NIRS is used globally in numerous industries for commodity analysis. Yet NIRS is largely unknown in the field of environmental chemistry and monitoring, and is not even routinely used in soil analysis, where the research literature on NIRS extends over four decades. Part of the explanation for the poor visibility of NIRS is the fact that NIRS is not routinely taught in Chemistry programs in universities, where most environmental chemists and environmental technicians are trained. This presentation examines the unique capabilities of NIRS, such as rapid, real-time analysis; analysis of whole samples; simultaneous analysis of multiple constituents; cost-effectiveness, and portability, as they match needs for analysis in several environmental areas. Examples of NIRS usage and published and unpublished results will be described for such areas as soil and sediment analysis; water quality monitoring; and nutrient loading in application of manures and sewage sludge (biosolids) to land. Present barriers to the use of NIRS in environmental analysis will be discussed. It is argued that emerging environmental problems and increasing attention to some traditional problems will enhance the application of NIRS in the future.

  • PDF

Thermal buckling of functionally graded sandwich plates using a new hyperbolic shear displacement model

  • Kettaf, Fatima Zohra;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.399-423
    • /
    • 2013
  • In the present study, the thermal buckling behavior of functionally graded sandwich plates is studied using a new hyperbolic displacement model. Unlike any other theory, the theory is variationally consistent and gives four governing equations. Number of unknown functions involved in displacement field is only four, as against five in case of other shear deformation theories. This present model takes into account the parabolic distribution of transverse shear stresses and satisfies the condition of zero shear stresses on the top and bottom surfaces without using shear correction factor. Material properties and thermal expansion coefficient of the sandwich plate faces are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. The thermal loads are assumed as uniform, linear and non-linear temperature rises across the thickness direction. The results reveal that the volume fraction index, loading type and functionally graded layers thickness have significant influence on the thermal buckling of functionally graded sandwich plates.

Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory

  • Fekrar, A.;El Meiche, N.;Bessaim, A.;Tounsi, A.;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.91-107
    • /
    • 2012
  • In this research, mechanical buckling of hybrid functionally graded plates is considered using a new four variable refined plate theory. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solution of a simply supported rectangular plate subjected to in-plane loading has been obtained by using the Navier method. The effectiveness of the theories is brought out through illustrative examples.

Prediction of Soluble Solid and Firmness in Apple by Visible/Near-Infrared Spectroscopy (가시광선/근적외선 분광분석법을 이용한 사과의 당도 및 경도 측정)

  • 최창현;이강진;박보순
    • Journal of Biosystems Engineering
    • /
    • v.22 no.2
    • /
    • pp.256-265
    • /
    • 1997
  • The objectives of this study were to examine the ability to predict soluble solid and firmness in intact apples based on the visible/near-infrared spectroscopic technique. Two cultivars of apples, Delicious and Gala, were handled, tested and analyzed separately. Reflectance spectra, Magness-Tayor (MT) firmness, and soluble solids in apples were measured sequentially. Maximum and minimum diameters, height, and weight of apples were recorded before the MT firmness tests. A spectrophotometer was used to collect reflectance spectra of intact apples over a wavelength range of 400 to 2, 498 nm. The W firmness tests were conducted using a standard 11.1mm (7/16 in.) MT probe mounted in an Instron universal testing machine. A digital refractormeter was used to measure soluble solid contents in the apples. Apple samples were divided into a calibration set and a prediction set. The calibration set was used during model development, and the prediction set was used to predict soluble solids and firmness from unknown spectra. The method of partial least square (PLS) analysis was used. An unique set of PLS loading vectors (factors) was developed for soluble solid content and firmness. The PLS model showed good correlations between predicted and measured soluble solids of intact apples in 860~1078 nm of the wavelengths. However, the PLS analysis was not good enough to predict the apple firmness.

  • PDF

Static analysis of functionally graded sandwich plates with porosities

  • Keddouri, Ahemd;Hadji, Lazreg;Tounsi, Abdelouahed
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.155-177
    • /
    • 2019
  • In this paper, a new displacement based high-order shear deformation theory is introduced for the static response of functionally graded sandwich plate with new definition of porosity distribution taking into account composition and the scheme of the sandwich plate. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, has strong similarity with classical plate theory in many aspects, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. Material properties of FGM layers are assumed to vary continuously across the plate thickness according to either power-law or sigmoid function in terms of the volume fractions of the constituents. The face layers are considered to be FG across each face thickness while the core is made of a ceramic homogeneous layer. Governing equations are derived from the principle of virtual displacements. The closed-form solution of a simply supported rectangular plate subjected to sinusoidal loading has been obtained by using the Navier method. Numerical results are presented to show the effect of the material distribution, the sandwich plate geometry and the porosity on the deflections and stresses of FG sandwich plates. The validity of the present theory is investigated by comparing some of the present results with other published results.