• Title/Summary/Keyword: unknown loading

Search Result 63, Processing Time 0.03 seconds

Minimum Margin Tank Loading Algorithm for Chemical Tank Loading Problem (화공약품 탱크 적재 문제의 최소 여유량 탱크 적재 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • The chemical tank loading problem has been classified as nondeterministic polynomial time (NP)-complete problem because of the polynomial-time algorithm to find the solution has been unknown yet. Gu$\acute{e}$ret et al. tries to obtain the optimal solution using linear programming package with $O(m^4)$ time complexity for chemical tank loading problem a kind of bin packing problem. On the other hand, this paper suggests the rule of loading chemical into minimum margin tank algorithm with O(m) time complexity. The proposed algorithm stores the chemical in the tank that has partial residual of the same kind chemical firstly. Then, we load the remaining chemical to the minimum marginal tanks. As a result of experiments, this algorithm reduces the $O(m^4)$ of linear programming to O(m) time complexity for NP-complete chemical tank loading problem.

Time-Dependent Behavior of Saturated Cellulose Fiber Reinforced Cement(CFRC) Pipe

  • Choi, Yeol
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.161-164
    • /
    • 2006
  • Cellulose fiber reinforced cement(CFRC) pipe has been gradually introduced in the pipe market as a replacement of previously popular asbestos cement pipes. Since CFRC pipe is still relatively unknown in the pipe market, there are great concerns for the design and application in practice related to the time-dependent behavior of CFRC under long-term sustained loading. This paper presents an experimental investigation of the time-dependent behavior of cellulose fiber reinforced cement(CFRC) pipe. A total of six CFRC pipes were tested under various loading levels, and their vertical deformation was recorded to understand the characteristics of the time-dependent behavior. Based on the test results, a factor of safety(FS) of 1.82 is proposed, and a regression factor(R) of 1.88 is estimated for the application of CFRC pipes in practice.

Quick and Accurate Computation of Voltage Stability Margin

  • Karbalaei, Farid;Abasi, Shahriar
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • It is well known that the behavior of PV curves is similar to a quadratic function. This is used in some papers to approximate PV curves and calculate the maximum-loading point by minimum number of power flow runs. This paper also based on quadratic approximation of the PV curves is aimed at completing previous works so that the computational efforts are reduced and the accuracy is maintained. To do this, an iterative method based on a quadratic function with two constant coefficients, instead of the three ones, is used. This simplifies the calculation of the quadratic function. In each iteration, to prevent the calculations from diverging, the equations are solved on the assumption that voltage magnitude at a selected load bus is known and the loading factor is unknown instead. The voltage magnitude except in the first iteration is selected equal to the one at the nose point of the latest approximated PV curve. A method is presented to put the mentioned voltage in the first iteration as close as possible to the collapse point voltage. This reduces the number of iterations needed to determine the maximum-loading point. This method is tested on four IEEE test systems.

Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading

  • Meksi, Abdeljalil;Benyoucef, Samir;Sekkal, Mohamed;Bouiadjra, Rabbab Bachir;Selim, Mahmoud M.;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.215-228
    • /
    • 2021
  • This paper investigates the effect of micromechanical models on the bending behavior of bidirectional functionally graded (BDFG) beams subjected to different mechanical loading. The material properties of the beam are considered to be graded in both axial and thickness directions according to a power law. The beam's behavior is modeled by the mean of quasi 3D displacement field that contain undetermined integral terms and involves a reduced unknown functions. Navier's method is employed to determine and compute the displacements and stress for a simply supported beam. Different homogenization schemes such as Voigt, Reus, and Mori-Tanaka are employed to analyze the response of the BDFG beam subjected to linear, uniform, exponential and sinusoidal distributed loading. The results obtained by the present method are compared with available results in the literature and a good agreement was found. Several numerical results are presented in tabular form and in figures to examine the effects of the material gradation, micromechanical models and types of loading on the bending response of BDFG beams. It can be concluded that the present theory is not only accurate but also simple in predicting the bending response of BDFG beam subjected to different static loads.

Acceleration-based neural networks algorithm for damage detection in structures

  • Kim, Jeong-Tae;Park, Jae-Hyung;Koo, Ki-Young;Lee, Jong-Jae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.583-603
    • /
    • 2008
  • In this study, a real-time damage detection method using output-only acceleration signals and artificial neural networks (ANN) is developed to monitor the occurrence of damage and the location of damage in structures. A theoretical approach of an ANN algorithm that uses acceleration signals to detect changes in structural parameters in real-time is newly designed. Cross-covariance functions of two acceleration responses measured before and after damage at two different sensor locations are selected as the features representing the structural conditions. By means of the acceleration features, multiple neural networks are trained for a series of potential loading patterns and damage scenarios of the target structure for which its actual loading history and structural conditions are unknown. The feasibility of the proposed method is evaluated using a numerical beam model under the effect of model uncertainty due to the variability of impulse excitation patterns used for training neural networks. The practicality of the method is also evaluated from laboratory-model tests on free-free beams for which acceleration responses were measured for several damage cases.

A Study on the COD Removal in the Paste-board Wastewater by Activated Sludge Process (활성오니법에 의한 판지폐수중의 COD 제거에 관한 연구)

  • 도갑수;김영운
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.3
    • /
    • pp.28-35
    • /
    • 1985
  • As the paper industry consumes much water in process and discharge wastewater containing suspended solid and COD(chemical oxygen demand), relevant law against this discharge has been set up to limit the total containment of COD in discharge. This study has been carried out to improve the treatment method for the soluble COD in wastewater produced during the process of paste-board production, which is made of semichemical pulp and waste paper. Applicated methods are, O$_2$AS : O$_2$ activated sludge process DAS : Deep well activated sludge process SAS : standard activated sludge process and proper combination of DAS and SAS 1) As a result of this experiment, we get the following conclusion between in COD sludge loading "X" and COD removable rate in the process of treating waste-water. COD removable rate(%)=(0.778+0.0146/X)${\times}$100(%)……(7) 2) In case that the COD sludge loading is high, it has been cleared out that the COD removable rate shall become low due to unknown unsoluble substances contained in the process. Meanwhile, to increase the efficiency rate of treatment, it is thought to be necessary, to provide long-time contacts with activated sludge. 3) Once the COD of original waste-water and the target COD of treated water are decided, COD sludge loading is obtained from equation(7), and capacity of aeration tank in the effective systems such as O$_2$AS, DAS, to bet the required COD removable rate can be decided. Therefore the choice among SAS, O$_2$AS, DAS methods is made in consideration of required COD removable rate and allowable installation area. 4) In the sedimentation tank with sludge bulking, it is possible to increase the COD removable rate by 3~7% but still there exist many obstacles to manage this operation.

  • PDF

Single-Molecule Imaging Reveals the Mechanism Underlying Histone Loading of Schizosaccharomyces pombe AAA+ ATPase Abo1

  • Kang, Yujin;Cho, Carol;Lee, Kyung Suk;Song, Ji-Joon;Lee, Ja Yil
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • Chromatin dynamics is essential for maintaining genomic integrity and regulating gene expression. Conserved bromodomain-containing AAA+ ATPases play important roles in nucleosome organization as histone chaperones. Recently, the high-resolution cryo-electron microscopy structures of Schizosaccharomyces pombe Abo1 revealed that it forms a hexameric ring and undergoes a conformational change upon ATP hydrolysis. In addition, single-molecule imaging demonstrated that Abo1 loads H3-H4 histones onto DNA in an ATP hydrolysis-dependent manner. However, the molecular mechanism by which Abo1 loads histones remains unknown. Here, we investigated the details concerning Abo1-mediated histone loading onto DNA and the Abo1-DNA interaction using single-molecule imaging techniques and biochemical assays. We show that Abo1 does not load H2A-H2B histones. Interestingly, Abo1 deposits multiple copies of H3-H4 histones as the DNA length increases and requires at least 80 bp DNA. Unexpectedly, Abo1 weakly binds DNA regardless of ATP, and neither histone nor DNA stimulates the ATP hydrolysis activity of Abo1. Based on our results, we propose an allosteric communication model in which the ATP hydrolysis of Abo1 changes the configuration of histones to facilitate their deposition onto DNA.

Numerical Simulation of Triaxial Compression Test Using the GREAT Cell: Hydro-Mechanical Experiment (GREAT 셀을 이용한 삼축압축시험의 수치모사: 수리역학 실험)

  • Dohyun Park;Chan-Hee Park
    • Tunnel and Underground Space
    • /
    • v.33 no.2
    • /
    • pp.83-94
    • /
    • 2023
  • Unlike the conventional triaxial test cells for cylindrical specimens, which impose uniform lateral confining pressures, the GREAT (Geo-Reservoir Experimental Analogue Technology) cell can exert differential radial stresses using eight independently-controlled pairs of lateral loading elements and thereby generate horizontal stress fields with various magnitudes and orientations. In the preceding companion paper, GREAT cell tests were numerically simulated under different mechanical loading conditions and the validity of the numerical model was investigated by comparing experimental and numerical results for circumferential strain. In the present study, we simulated GREAT cell tests for an artificial sample containing a fracture under both mechanical loading and fluid flow conditions. The numerical simulation was carried out by varying the mechanical properties of the fracture surface, which were unknown. The numerical responses (circumferential strains) of the sample were compared with experimental data and a good match was found between the numerical and experimental results under certain mechanical conditions of the fracture surface. Additionally, the effect of fluid flow conditions on the mechanical behavior of the sample was investigated and discussed.

Forced Resonant Type Cutoff Cavity-Backed Aperture Antennas Loaded with a Single External Reactance

  • Kim Ki-Chai;Hirasawa Kazuhiro
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.3
    • /
    • pp.105-111
    • /
    • 2005
  • This paper presents the basic characteristics of a cutoff cavity-backed aperture antenna with a feed post and a parasitic post inserted parallel to the aperture. It is shown that this type of antenna forcibly resonates the cutoff cavity by adding a single external reactance to the parasitic post. The Galerkin's method of moments is used to analyze integral equations for the unknown electric current on each post and the aperture electric field on the aperture. The value of an external reactance for forced resonance is analytically obtained by deriving a determining equation. Also the current distribution on each post, aperture electric field distributions, and the radiation patterns are discussed. The theoretical analysis is verified by the measured return loss and radiation patterns.

Sludge Granulation Depending Hydrogen Feeding on The Varying Periods of Hydrogen Feeding and Starvation (수소기질 결핍 및 공급 기간비 변화에 따른 슬러지 입상화)

  • Jeong, Byung-Gon;Lee, Heon-Mo;Yang, Byung-Soo
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.387-398
    • /
    • 1996
  • Granular sludge formation and it's activity change are the most important factors in achieving successful start-up and operation of UASB reactor. Nevertheless, the detailed mechanism is still unknown. On the basic of the experiments in laboratory-scale UASB reactor, the effect of hydrogen partial pressure on sludge granulation was evaluated. Size distribution method and specific metabolic activity of the sludge with the operation time were used as a means for estimating the degree of the sludge granulation. At the constant hydrogen loading, the granulation increased as starvation periods in hydrogen supply increased, resulting in high organic removal efficiency. It was evidient that hydrogen play very important role in granulation and sludge granulation was achieved through mutual symbiosis between hydrogen utilizing bacteria and hydrogen producing bacteria under the hydrogen dificient conditions. Key words : granular sludge, UASB reactor, hydrogen partial pressure.

  • PDF