One of the most fundamental challenges when designing controllers for dynamic systems is the adjustment of controller parameters. Usually the system model is used to get the initial controller, but eventually the controller parameters must be manually adjusted in the real system to achieve the best performance. To avoid this manual tuning step, data-driven methods such as machine learning were used. Recently, reinforcement learning became one alternative of this problem to be considered as an agent learns policies in large state space with trial-and-error Markov Decision Process (MDP) which is widely used in the field of robotics. However, on initial training step, as an agent tries to explore to the new state space with random action and acts directly on the controller parameters in real systems, MDP can lead the system safety-critical system failures. Therefore, the issue of 'safe exploration' became important. In this paper we meet 'safe exploration' condition with Control Barrier Function (CBF) which converts direct constraints on the state space to the implicit constraint of the control inputs. Given an initial low-performance controller, it automatically optimizes the parameters of the control law while ensuring safety by the CBF so that the agent can learn how to predict and control unknown and often stochastic environments. Simulation results on a quadrotor UAV indicate that the proposed method can safely optimize controller parameters quickly and automatically.
The bulk and partition geochemistry was studied in two sediment cores collected from the axial valley of the north-central Fonualei Rift and Spreading Center (FRSC), Lau back-arc Basin, southwest Pacific. The sediments consist of mostly volcanic ash, although minor amounts of biogenic and other components were present in some intervals. The major element composition of bulk sediments recalculated to a carbonate-free basis was in good agreement with the magma compositions of the adjacent Tofua Arc and the FRSC, with only significant difference in Mn content. The enrichment of Mn and other associated elements (e.g. Cu, Co, Ni, and P) is attributed to hydrothermal input to the sediments, as evidenced by their significant partitioning in the non-detrital phases according to the partition geochemistry. Hydrogenetic and diagenetic inputs were assessed to be relatively insignificant. Estimated hydrothermal Mn fluxes during the Holocene ranged between 5.0 and 37.1 mg cm-2 kyr-1, with the higher values in younger sediments, suggesting enhanced hydrothermal activity. The hydrothermal Mn fluxes comparable to or higher than those reported from other spreading centers with strong hydrothermal activities may indicate the presence of unknown hydrothermal vent sites and/or topographic restriction on the dispersal of hydrothermal plumes in the northern part of the FRSC.
One of the basic problems in Wireless Sensor Networks (WSNs) is the localization of the sensor nodes based on the known location of numerous anchor nodes. WSNs generally consist of a large number of sensor nodes and recording the location of each sensor nodes becomes a difficult task. On the other hand, based on the application environment, the nodes may be subject to mobility and their location changes with time. Therefore, a scheme that will autonomously estimate or calculate the position of the sensor nodes is desirable. This paper presents an intelligent localization scheme, which is an artificial neural network (ANN) based localization scheme used to estimate the position of the unknown nodes. In the proposed method, three anchors nodes are used. The mobile or deployed sensor nodes request a beacon from the anchor nodes and utilizes the received signal strength indicator (RSSI) of the beacons received. The RSSI values vary depending on the distance between the mobile and the anchor nodes. The three RSSI values are used as the input to the ANN in order to estimate the location of the sensor nodes. A feed-forward artificial neural network with back propagation method for training has been employed. An average Euclidian distance error of 0.70 m has been achieved using a ANN having 3 inputs, two hidden layers, and two outputs (x and y coordinates of the position).
슬라이딩모드 제어의 문제는 제어입력에 포함된 알려지지 않은 외란 등 비선형 입력으로 인한 채터링의 발생이다. 본 연구는 채터링 발생의 문제를 해결하기 위한 제어 알고리듬에 대하여 고찰하고 채터링을 억제하는 슬라이딩모드 제어기를 설계하고자 한다. 슬라이딩모드 제어 시 발생하는 채터링을 억제하기 위해 알려지지 않은 외란을 포함한 비선형 입력에 대하여 평활함수를 적용한다. 이 방법에 의하여 도립진자 시스템의 동적 방정식에 포함된 비선형 요소와 외란에 의한 문제가 해결될 수 있음을 보인다. 또 슬라이딩모드 제어를 위한 제어 입력을 시스템에 적용하였고, 제안한 제어기의 제어성능을 검증하기 위하여 도립진자를 대상으로 컴퓨터 모의실험을 수행하였다. 모의실험 결과 제어입력에 포함된 큰 폭의 채터링이 제거되었음을 확인할 수 있다.
본 논문은 실제 시스템의 빅데이터가 확보되었고 시스템에 대한 정보를 일부 알고 있을 때 파라미터를 가진 그레이박스 혹은 블랙박스 형태의 가설모델을 설정하고 기계학습을 통해 모델을 자동 생성하는 기법을 제안하였다. 제안된 프레임워크를 구현하고 다양한 가설모델에 대한 실험을 통해 학습된 모델의 정합도와 가설모델의 학습에 소요되는 비용에 대해 분석하였다. 실험결과 제안된 가설모델 기반 기계학습 기법으로 상미분방정식으로 기술될 수 있은 연속시스템의 그레이박스 혹은 화이트 박스 가설모델과 주어진 빅데이터를 이용하여 모델링을 했을 때 상당히 좋은 성능과 정확도를 보인 모델을 찾아낼 수 있음을 확인하였다. 이 기법은 최근 생성된 빅데이터를 이용하여 디지털트윈 모델의 일치성을 자동 갱신하거나 새로운 입력에 대한 출력을 예측하는 목적으로도 잘 활용될 수 있을 것으로 기대된다.
Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.
지하수 모델 개발 시 수문 경계를 실제 지하수계에 부합되도록 개념화하는 것은 모델의 신뢰도를 결정하는데 매우 중요하다. 본 논문에서는 지하수 분수령, 하천, 대수층의 하부 경계면 등의 수문 경계를 모델에서 개념화할 때 수반되는 불확실성이 모델 결과에 미치는 영향을 고찰하였다. 첫째, 연구지역을 대상으로 현장시험을 수행하여 모델 입력 자료를 확보하였으며, Visual Modflow 프로그램을 이용하여 연구지역에 대한 지하수 흐름 모델을 개발하였다. 지하수 함양량을 모델 보정 인자로 설정하였으며, 현장에서 관측된 지하수위 자료를 이용하여 모델을 보정하였다. 둘째, 민감도 분석을 통하여 지하수 분수령의 위치, 하천 지류들의 경계조건 설정 여부, 암반의 하부 경계면의 위치 등이 모델 결과에 미치는 영향을 정량적으로 분석하였다. 셋째, 민감도 분석 결과에 근거하여, 국내 지하수계를 대상으로 신뢰성 있는 개념 모델을 개발하고자 할 때 요구되는 주요 내용들을 토의하였으며, 현장조사 단계에서 부지특성화를 위해 필요한 효과적인 전략을 제시하였다.
Peripheral nerve injury sometimes leads to neuropathic pain and depletion of calcitonin gene related-peptide (CGRP) and substance P (SP) in the spinal cord. However, the pathophysiological mechanisms for depletion of CGRP and SP following the neurorathic injury are still unknown. This study was performed to see whether the distribution of immunoreactivity for CGRP and SP in the superficial dorsal horn and dorsal root ganglia(DRG) was related to the distance between the DRG and injury site. To this aim, we compared two groups of rats; one group was subjected to unilateral inferior and superior caudal trunk transections at the level between the S3 and S4 spinal nerves (S34 group) and the other group at the levels between the S1 and S2, between S2 and S3 and between S3 and S4 spinal nerve (S123 group). The transections in both groups equally eliminated the inputs from the tail to the S1-3 DRG, but the distance from the S1/S2 DRG to the injury site was different between the two groups. Immunostaining with SP and CGRP antibody was done in the S1-S3 spinal cord and DRG of the two groups 1 and 12 weeks after the injury. The results obtained are as follows: 1. The immunoreactivity for CGRP and SP in the ipsilateral superficial dorsal horn and DRG decreased 1 and 12 weeks after neuropathic nerve injury. 2. The immunoreactive area of SP and CGRP in the S1 dorsal horn was smaller in the S123 group than in the S34 group, whereas that in the S3 dorsal horn was not significantly different between the two groups. The number of SP-immunoreactive DRG cells decreased on the neuropathic side as compared to the sham group's in all DRGs of experimental groups except the S1 DRG of the S34 group. These results suggest that the amounts of SP and CGRP in the dorsal horn and DRG following neuropathic injury inversely decrease according to the distance between the DRG and injury site.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.