• Title/Summary/Keyword: university life

Search Result 59,907, Processing Time 0.072 seconds

Inhibition of endoplasmic reticulum stress in high-fat-diet-induced obese C57BL/6 mice: Efficacy of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris

  • Lee, Mi Rim;Bae, Su Ji;Kim, Ji Eun;Song, Bo Ram;Choi, Jun Young;Park, Jin Ju;Park, Ji Won;Kang, Mi Ju;Choi, Hyeon Jun;Choi, Young Whan;Kim, Kyung Mi;Hwang, Dae Youn
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2018
  • A few clues about correlation between endoplasmic reticulum (ER) stress and mulberry (Morus alba) leaves were investigated in only the experimental autoimmune myocarditis and streptozotocin-induced diabetes. To investigate whether a novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) could suppress ER in fatty liver, alterations in the key parameters for ER stress response were measured in high fat diet (HFD)-induced obese C57L/6 mice treated with EMfC for 12 weeks. The area of adipocytes in the liver section were significantly decreased in the HFD+EMfC treated group as compared to the HFD+Vehicle treated group, while their level was higher in HFD+Vehicle treated group than No treated group. The level of the eukaryotic initiation factor 2 alpha ($eIF2{\alpha}$) and inositol-requiring enzyme 1 beta ($IRE1{\alpha}$) phosphorylation and CCAAT-enhancer-binding protein homologous protein (CHOP) expression were remarkably enhanced in the HFD+Vehicle treated group. However, their levels were restored in the HFD+EMfC treated group, although some differences were detected in the decrease rate. Similar recovery was observed on the ER stress-induced apoptosis. The level of Caspase-3, Bcl-2 and Bax were decreased in the HFD+EMfC and HFD+orlistat (OT) treated group compared to the HFD+Vehicle treated group. The results of the present study therefore provide first evidence that EMfC with the anti-obesity effects can be suppressed ER stress and ER stress-induced apoptosis in the hepatic steatosis of HFD-induced obesity model.

Hepatotoxicity and nephrotoxicity of saponin-enriched extract of Asparagus cochinchinensis in ICR mice

  • Sung, Ji Eun;Choi, Jun Young;Kim, Ji Eun;Lee, Hyun Ah;Yun, Woo Bin;Park, Jin Ju;Kim, Hye Ryeong;Song, Bo Ram;Kim, Dong Seob;Lee, Chung Yeoul;Lee, Hee Seob;Lim, Yong;Hwang, Dae Youn
    • Laboraroty Animal Research
    • /
    • v.33 no.2
    • /
    • pp.57-67
    • /
    • 2017
  • The inhibitory effects of Asparagus cochinchinensis against inflammatory response induced by lipopolysaccharide (LPS), substance P and phthalic anhydride (PA) treatment were recently reported for some cell lines and animal models. To evaluate the hepatotoxicity and nephrotoxicity of A. cochinchinensis toward the livers and kidneys of ICR mice, alterations in related markers including body weight, organ weight, urine composition, liver pathology and kidney pathology were analyzed in male and female ICR mice after oral administration of 150, 300 and 600 mg/kg body weight/day saponin-enriched extract of A. cochinchinensis (SEAC) for 14 days. The saponin, total flavonoid and total phenol levels were found to be 57.2, 88.5 and 102.1 mg/g in SEAC, respectively, and the scavenging activity of SEAC gradually increased in a dose-dependent manner. Moreover, body and organ weight, clinical phenotypes, urine parameters and mice mortality did not differ between the vehicle and SEAC treated group. Furthermore, no significant alterations were measured in alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), blood urea nitrogen (BUN) and the serum creatinine (Cr) in the SEAC treated group relative to the vehicle treated group. Moreover, the specific pathological features induced by most toxic compounds were not observed upon liver and kidney histological analysis. Overall, the results of the present study suggest that SEAC does not induce any specific toxicity in the livers and kidneys of male and female ICR mice at doses of 600 mg/kg body weight/day.