• Title/Summary/Keyword: unit hydrograph

Search Result 211, Processing Time 0.025 seconds

Sediment Yield by Instantaneous Unit Sediment Graph

  • Yeong Hwa Lee
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.29-36
    • /
    • 1993
  • An instantaneous unit sediment graph (IUSG) model is investigated for prediction of sediment yield from an upland watershed In Northwestern Mississippi. Sediment yields are predicted by convolving source runoff with an IUSG. The IUSG is the distribution of sediment from an instantaneous burst of rainfall producing one unit of runoff. The IUSG, defined as a product of the sediment concentration distribution (SCD) and the instantaneous unit hydrograph (IUH), is known to depend on the characteristics of the effective rainfall. The IUH is derived by the Nash model for each event. The SCD is assumed to be an exponential function for each event and its parameters were correlated with the effective rainfall characteristics. A sediment routing function, based on travel time and sediment particle size, is used to predict the SCD.

  • PDF

Peak Discharge Change by Dirrerent Design Rainfall on Small Watershed

  • Jun, Byong-Ho;Jang, Suk-Hwan
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.97-104
    • /
    • 1992
  • To design the minor structures in the small watersheds, it is required to calculate the peak discharge. For these calculations the simple peak flow prediction equations, the unit hydrograph method. the syntheic unit hydrograph methods or the runoff simulation models are adopted. To use these methods it is generally requried to know the amount and the distributions of the design rainfall; which are the uniform distribution, the trangular distribution, the trapezoidal distribution, or the Huff type distribution. In this study, the peak discharges are calculated by the different rainfall distributions and the results are compared.

  • PDF

Revision of the Snyder's Coefficients of Synthetic Unit Hydrograph in the South Han River Basin (합성단위유량단의 Snyder 계수재조정 - 남한강수계를 중심으로 -)

  • 선우중호;고영찬
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1985.07a
    • /
    • pp.7-16
    • /
    • 1985
  • 본 연구는 유역 추적에 자주 쓰이는 합성단위 유량도(synthetic unit hydrograph) 방법의 하나인 Snyder 방법에 있어서의 계수를 남한강수계에서 재조정하는 과정(procedure)을 제시하였다. 그 과정을 간략하게 설명하며, 이전에 구한 남한강 수계에서의 snyder 계수를 초기치로 하여 HEC-1 program을 이용하여 계수를 재조정한다. 이와 같은 과정을 통하여 재조정된 계수는 그 전의 계수에 의한 합성단위 유량도보다 지체시간($$)이 작아지고 첨두(peak)값이 커지는 특성을 가지고 있다.

  • PDF

Determination of Optimal Unit Hydrographs and Infultration Rate Functions from Single Rainfall-Runoff Event (단순 강우-유출 사상으로부터 최적단위도와 침투율의 결정)

  • An, Tae-Jin;Ryu, Hui-Jeong;Jeong, Gwang-Geun;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.3
    • /
    • pp.365-374
    • /
    • 2000
  • This paper is to present the determination of the optimal Joss rate parameters and urnt bydrographs from the observed single rainfall-runoff event using optimization models coupled with a stochastic technique for the global solution. Two kinds of the linear program models are formulated to derive the optimal unit hydrographs and loss rate parameters for gaged basins; one mimmizes the summation of the absolute residual between predlCted and observed runoff ordinates and the other, the maximum absolute residuaL Multistart algorithm which is one or stochastic techniques for the global optimum is adopted to perturb the parameters of the loss rate equations. Multistart efficiently searches the feasIble region to identify the global optimlUll for loss rate parameters, which yields the optimal loss rate parameters and unit hydrograph for Kostiakov's, Plulip's, and Horton's equation. The unique unit hydrograph ordinates for a gIven rainfall-runoff event iS exclusrvely obtained WIth $\Phi$ index, but unit hydrograph ordinates depend upon the parameters [or each loss rate equations. The parameters of Green-Ampt's are determined through a trial and error method. In this paper the single rainfall-nmoff event observed from a watershed is considered to test the proposed method. The optimal unit hydrograph herein found has smaller deviations than the ones reported previously by other researchers.

  • PDF

A Developmont of Numerical Mo del on the Estimation of the Log-term Run-off for the Design of Riverheads Works -With Special Reference to Small and Medium Sijed Catchment Areas- (제수원공 설계를 위한 장기간 연속수수량 추정모형의 개발 - 중심유역을 중심으로)

  • 엄병현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.59-72
    • /
    • 1987
  • Although long-term runoff analysis is important as much as flood analysis in the design of water works, the technological level of the former is relatively lower than that of the latter. In this respect, the precise estimation model for the volume of successive runoff should he developed as soon as possible. Up to now, in Korea, Gajiyama's formula has been widely used in long-term runoff analysis, which has many problems in applying in real situation. On the other hand, in flood analysis, unit hydrograph method has been exclusively used. Therefore, this study aims at trying to apply unit hydrograph method in long-term runoff analysis for the betterment of its estimation. Four test catchment areas were selected ; Maesan area in Namlum river as a representative area of Han river system, Cheongju area in Musim river as one of Geum river system, Hwasun area in Hwasun river as one of Yongsan river system, and Supyung area in Geum river as one of Nakdong river system. In the analysis of unit hydrograph, seperation of effective rainfall was carried out firstly. Considering that effective rainfall and moisture condition of catchrnent area are inside and outside of a phenomenon respectively and the latter is not considered in the analysis, Initial base flow(qb)was selected as an index of moisture condition. At the same time, basic equation(Eq.7) was established, in which qb can take a role as a parameter in relating between cumulative rainfall(P) and cumulative loss of rainfall(Ld). Based on the above equation, computer program for estimation model of qbwas seperately developed according to the range of qb, Developed model was applied to measured hydrographs and hyetographs for total 10 years in 4 test areas and effective rainfall was estimated. Estimation precision of model was checked as shown in Tab- 6 and Fig.8. In the next stage, based on the estimated effective rainfall(R) and runoff(Qd), a runoff distribution ratio was calculated for each teat area using by computerised least square method and used in making unit hydrographs in each test area. Significance of induced hydrographs was tested by checking the relative errors between estimated and measured runoff volume(Tab-9, 10). According to the results, runoff estimation error by unit hydrograph itself was merely 2 or 3 %, but other 2 or 3 % of error proved to be transferred error in the seperation of effective rainfall. In this study, special attentioning point is that, in spite of different river systems and forest conditions of test areas, standardized unit hydrographs for them have very similar curve shape, which can be explained by having similar catchinent characteristics such as stream length, catchinent area, slope, and vegetation intensity. That fact should be treated as important factor ingeneralization of unit hydrograph method.

  • PDF

Identification of unit hydrograph peak behavior according to changes in precipitation scale in a virtual watershed (가상 유역의 강수 규모 변화에 따른 단위유량도 첨두치의 거동 규명)

  • Yoo, Ju-Hwan;Kim, Joo-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.655-665
    • /
    • 2023
  • In this study, unit hydrographs are calculated when precipitations of 10 scales instantaneously occurs in a virtual watershed with a constant slope and roughness. Then, the relationship between the peak flow rate and the peak occurrence time of the unit hydrograph was calculated for the precipitation scale, respectively. At this time, the virtual watershed simplified with a rhombic shape, a constant slope, and a flow condition with a certain roughness was applied instead of a natural watershed in order to understand the effect the precipitation scale has on the peak value of the unit hydrograph. And it was assumed that the precipitation in the basin was effective rainfall and the runoff was direct runoff, and the runoff flowed in a straight, uniform flow from the drop point to the outlet. The relationship between the peak flow and the peak occurrence time of the unit hydrograph was calculated in the case of 10 types of precipitation scales of 10 mm, 40 mm, 90 mm, 160 mm, 250 mm, 360 mm, 640 mm, 1,000 mm, 1,210 mm, and 1,690 mm of effective precipitation. A noteworthy achievement of this study is that, even without the storage effect of the watershed, as the scale of precipitation increases, the depth of runoff increases, so the flow rate in the watershed increases and the distance per unit time increases, so the peak flow rate increases and the peak occurrence time increases. This is a nonlinear characteristic of watershed runoff.

Estimation of Design Flood Considering Time Distribution of Rainfall (강우 시간분포를 고려한 설계홍수량산정)

  • Park, Jae-Hyun;Ahn, Sang-Jin;Hahm, Chang-Hahk;Choi, Min-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1191-1195
    • /
    • 2006
  • Now days, heavy storm occur to be continue. It is hard to use before frequency based on flood discharge for decision that design water pocket structure. We need to estimation of frequency based on flood discharge on the important basin likely city or basin that damage caused by flood recurrence. In this paper flood discharge calculated by Clark watershed method and SCS synthetic unit hydrograph method about upside during each minute of among time distribution method of rainfall, Huff method choosing Bocheong Stream basin that is representative basin of International Hydrologic Project (IHP) about time distribution of rainfall that exert big effect at flood discharge estimate to research target basin because of and the result is as following. Relation between probability flood discharge that is calculated through frequency analysis about flood discharge data and rainfall - runoff that is calculated through outward flow model was assumed about $48.1{\sim}95.9%$ in the case of $55.8{\sim}104.0%$, SCS synthetic unit hydrograph method in case of Clark watershed method, and Clark watershed method has big value overly in case of than SCS synthetic unit hydrograph method in case of basin that see, but branch of except appeared little more similarly with frequency flood discharge that calculate using survey data. In the case of Critical duration, could know that change is big area of basin is decrescent. When decide time distribution type of rainfall, apply upside during most Huff 1-ST because heavy rain phenomenon of upsides appears by the most things during result 1-ST about observation recording of target area about Huff method to be method to use most in business, but maximum value of peak flood discharge appeared on Huff 3-RD too in the case of upside, SCS synthetic unit hydrograph method during Huff 3-RD incidental of this research and case of Clark watershed method. That is, in the case of Huff method, latitude is decide that it is decision method of reasonable design floods that calculate applying during all $1-ST{\sim}4-TH$.

  • PDF

A Study on the Geomorphologic Synthesis of Hydrologic Response (수문응답의 지형학적 합성방법에 관한 연구)

  • Cho, Hong Je;Lee, Sang Bae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.99-108
    • /
    • 1990
  • A Synthetic Unit Hydrograph Method was investigated for representation of the effective rainfall-direct runoff hydrograph by using a Geomorphologic Instantaneous Unit Hydrograpb(GIUH) proposed by Gupta et al(1980). The response function of the basin was assumed to be the two-parameter gamma probability density function. The physical parameters of the response function(Nash Model) was determined by using the regression eqs. were parameterized in terms of Horton order ratios and the relations between the basin lag time and time-scale parameter. The capability of the Synthetic Unit Hydrograph to the real basin was tested for the Pyungchang river basin and Wi Stream basin, and its capability to reproduce the hydrologic response was investigate and compared with the Moment Method and the Least Square Method used incomplete gamma function. The representation of the peak flow, the time to peak and the hydrographs the derived Synthetic Unit Hydrograph were tested on some obseved flood data and showed promising, and it was approved to be used for prediction of the ungaged basins.

  • PDF

Analysis of the Clark Model Using the Similarity Characteristics of the Basin (유역의 상사성을 이용한 Clark 모형의 매개변수 해석)

  • Seong, Gi-Won
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.427-435
    • /
    • 1999
  • The Clark unit hydrograph is a three parameter synthetic unit hydrograph procedure that can be used in flood hydrology. The present work is an attempt to estimate parameters of the Clark model in ungaged basin by means of relationships that provides for the hydrologic similarity. The time area concentration curve was determined by analytic method and the Clark model was generalized by being made dimensionless form. Calculation of the concentration time was made with the formula fractal concept used, and the storage coefficient was estimated by the empirical and regional equation. Evaluation on Dongok basin was performed to prove the validity of the proposed model. The derived hydrograph predicted the observed hydrograph fairly well.

  • PDF