• 제목/요약/키워드: unimorph composite curved actuator

검색결과 4건 처리시간 0.016초

복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석 (Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator)

  • 정재한;박기훈;박훈철;윤광준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

향상된 작동력 및 변형량을 갖는 곡면형 복합재 작동기(LIPCA) 설계 및 제조기법 (Design and manufacturing technique for a curved composite actuator, LIPCA with improved actuation force and displacement)

  • 윤광준;박훈철;신석준;김주식
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.135-138
    • /
    • 2000
  • 본 논문에서는 열팽창계수(CTE)가 거의 없는 카본게폭시, PZT 세라믹 박판, 그리고 열팽창계수가 큰 글래스/에폭시 층으로 이루어진 곡면형 복합재료 작동기(LIPCA)의 설계, 제작 및 성능실험에 대한 연구성과를 제시하고 있다. LIPCA의 른 요점은 기존 THUNDER의 성능을 유지하면서 이를 경량화 하기 위하여 THUNDER의 금속 층을 상대적으로 가벼운 섬유 강화 복합재료로 대체하는 것이다. 이러한 경량화 작업으로 LIPCA는 기존 THUNDER 보다 약 30~40% 정도의 무게를 감소시킬 수 있으며, 복합재료의 특성에 따라 설계의 유연성을 가질 수 있는 장점이 있다. 또한, 에폭시 수지를 사용함으로써 접착제 없이 평판 몰드에서 오토클레이브에서 177$^{\circ}C$로 경화되어, 탈형된 후 충분한 곡률을 형성하였다. 작동 성능 실험에서, LIPCA는 기존 THUNDER보다 작동변위가 향상됨을 보였다.

  • PDF

Design and Performance Evaluation of Mini-Lightweight Piezo-Composite Actuators

  • Tran, Anh Kim;Yoon, Kwang-Joon
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.327-338
    • /
    • 2009
  • In this paper, through an evaluation process conducted on several designs of mini-LIPCA (Lightweight Piezo-Composite curved Actuator), an optimal design of a mini-LIPCA has been proposed. Comparing with the LIPCA-C2, the design of the mini-LIPCA comes with reduced overall size and a thinner active layer. Since a variation in the number and lay-up of fiber composite layers may strongly affect the performance of the device, one is able to configure several designs of mini-LIPCA. The evaluation process is then followed in order to determine a configuration which characterizes the possibly optimal performance. That is, a design of a mini-LIPCA is said to be optimal if it is capable of producing a maximum out-of-plane displacement. The size of the LIPCA to be investigated was selected to be $10\;mm\;{\times}\;20\;mm$ in which the thickness of PZT plate is about 0.1 mm. The thickness of glass/epoxy and carbon/epoxy are about 0.09 mm and 0.1 mm, respectively. The evaluation process has been conducted thoroughly, i.e., analytical estimation, numerical approximation and the experimental measurement are all involved. Firstly, the design equation was used to calculate essential parameters of proposed lay-up configurations. Secondly, ANSYS, a commercial FEA package, was utilized to estimate displacement outputs of the actuators upon being excited. Finally, experimental measurements were able to verify the predicted results.

인공근육형 LIPCA를 이용한 물고기 모방 로봇의 설계, 제작 및 실험 (Mechanical Design Fabrication and Test of a Biomimetic Fish Robot Using LIPCA as an Artificial Muscle)

  • 허석;테디 위구나;구남서;박훈철
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.36-42
    • /
    • 2007
  • This paper presents mechanical design, fabrication and test of a biomimetic fish robot actuated by a unimorph piezoceramic actuator, LIPCA(Lightweight Piezo-Composite curved Actuator.) We have designed a linkage mechanism that can convert bending motion of the LIPCA into the caudal fin movement. This linkage system consists of a rack-pinion system and four-bar linkage. Four types of artificial caudal fins that resemble caudal fin shapes of ostraciiform subcarangiform, carangiform, and thunniform fish, respectively, are attached to the posterior part of the robotic fish. The swimming test under 300 $V_{pp}$ input with 0.6 Hz to 1.2 Hz frequency was conducted to investigate effect of tail beat frequency and shape of caudal fin on the swimming speed of the robotic fish. At the frequency of 0.9 Hz, the maximum swimming speeds of 1.632 cm/s, 1.776 cm/s, 1.612 cm/s and 1.51 cm/s were reached for fish robots with ostraciiform, subcarangiform carangiform and thunniform caudal fins, respectively. The Strouhal number, which means the ratio between unsteady force and inertia force, or a measure of thrust efficiency, was calculated in order to examine thrust performance of the present biomimetic fish robot. The calculated Strouhal numbers show that the present robotic fish does not fall into the performance range of a fast swimming robot.