• Title/Summary/Keyword: unilateral buckling

Search Result 4, Processing Time 0.018 seconds

Evaluation of unilateral buckling of steel plates in composite concrete-steel shear walls

  • Shamsedin Hashemi;Samaneh Ramezani
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.129-140
    • /
    • 2023
  • To increase the stiffness and strength of a reinforced concrete shear wall, steel plates are bolted to the sides of the wall. The general behavior of a composite concrete-steel shear wall is dependent on the buckling of the steel plates that should be prevented. In this paper, the unilateral buckling of steel plates of a composite shear wall is studied using the Rayleigh-Ritz method. To model the unilateral buckling of steel plate, the restraining concrete wall is described as an elastic foundation with high stiffness in compression and zero stiffness in tension. To consider the effect of bolt connections on the plate's buckling, a constrained optimization problem is solved by using Lagrange multipliers method. This process is used to obtain the critical elastic local buckling coefficients of unilaterally-restrained steel plates with various numbers of bolts, subjected to pure compression, bending and shear loading, and the interaction between them. Using these results, the spacing between shear bolts in composite steel plate shear walls is estimated and compared with the results of the AISC seismic provisions (2016). The results show that the AISC seismic provisions(2016) are overly conservative in obtaining the spacing between shear bolts.

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.

Repair of Unilateral Cleft Lip using Mulliken's Modification of Rotation Advancement (회전-신전법의 Mulliken 변형을 이용한 편측 구순열 수술)

  • Lee, Gyu-Tae;Lim, Jae-Seok;Jung, Hwi-Dong;Jung, Young-Soo
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2012
  • Unilateral cleft lip is not a simple and independent problem in all aspects. nasal deformity results from the cleft lip, maxillary hypoplasia, and abnormal muscular pull on the nasal structures, including abnormal muscular tension on the alar base and abnormal position of the orbicularis oris muscle. Its gross and histopathologic characteristics include widening of the alar base, a midline deviation of the columella and septum to the noncleft side, dorsal displacement of the dome, lateral rotation of medial crura, buckling of the alar cartilage, and underdevelopment of the pyriform aperture. Since Dr. Millard first presented his method for repair of the unilateral cleft lip and nasal deformity in 1955, no other technique has gained as much popularity as the rotation-advancement principle. Principles established more than 50 years ago and techniques are evolving continuously. Unlike earlier procedures, this repair gives the surgeon the opportunity to manipulate the individual cleft elements through various modifications while maintaining Millard's original surgical and anatomical goals. Although this strategy is applied worldwide, successful execution is variable and highly operator dependent. Millard and many other surgeons have made technical variations to adjust the procedure to each specific patient, to address some of its faults, and to gain new advantages. We will review the Mulliken's modifications that Dr. Millard made to his original rotation-advancement principle and inform cases applied modifying the rotation-advancement principle.

  • PDF

Orbital wall restoring surgery with resorbable mesh plate

  • Joo, Jae Doo;Kang, Dong Hee;Kim, Hyon Surk
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.4
    • /
    • pp.264-269
    • /
    • 2018
  • Background: Orbital resorbable mesh plates are adequate to use for isolated floor and medial wall fractures with an intact bony buttress, but are not recommended to use for large orbital wall fractures that need load bearing support. The author previously reported an orbital wall restoring surgery that restored the orbital floor to its prior position through the transnasal approach and maintained temporary extraorbital support with a balloon in the maxillary sinus. Extraorbital support could reduce the load applied on the orbital implants in orbital wall restoring surgery and the use of resorbable implants was considered appropriate for the author's orbital wall restoring technique. Methods: A retrospective review was conducted of 31 patients with pure unilateral orbital floor fractures between May 2014 and May 2018. The patients underwent transnasal restoration of the orbital floor through insertion of a resorbable mesh plate and maintenance of temporary balloon support. The surgical results were evaluated by the Hertel scale and a comparison of preoperative and postoperative orbital volume ratio (OVR) values. Results: The OVR decreased significantly, by an average of 6.01% (p<0.05) and the preoperative and postoperative Hertel scale measurements decreased by an average of 0.34 mm with statistical significance (p<0.05). No complications such as buckling or sagging of the implant occurred among the 31 patients. Conclusion: The use of resorbable mesh plate in orbital floor restoration surgery is an effective and safe technique that can reduce implant deformation or complications deriving from the residual permanent implant.