• 제목/요약/키워드: uniform stress state function

검색결과 13건 처리시간 0.024초

Material distribution optimization of 2D heterogeneous cylinder under thermo-mechanical loading

  • Asgari, Masoud
    • Structural Engineering and Mechanics
    • /
    • 제53권4호
    • /
    • pp.703-723
    • /
    • 2015
  • In this paper optimization of volume fraction distribution in a thick hollow cylinder with finite length made of two-dimensional functionally graded material (2D-FGM) and subjected to steady state thermal and mechanical loadings is considered. The finite element method with graded material properties within each element (graded finite elements) is used to model the structure. Volume fractions of constituent materials on a finite number of design points are taken as design variables and the volume fractions at any arbitrary point in the cylinder are obtained via cubic spline interpolation functions. The objective function selected as having the normalized effective stress equal to one at all points that leads to a uniform stress distribution in the structure. Genetic Algorithm jointed with interior penalty-function method for implementing constraints is effectively employed to find the global solution of the optimization problem. Obtained results indicates that by using the uniform distribution of normalized effective stress as objective function, considerably more efficient usage of materials can be achieved compared with the power law volume fraction distribution. Also considering uniform distribution of safety factor as design criteria instead of minimizing peak effective stress affects remarkably the optimum volume fractions.

세립퇴적물 부상과 퇴적에 관한 연구 (Entrainment and Deposition of Fine-grained Sediments)

  • 강시환
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1984년도 제26회 수공학연구발표회논문초록집
    • /
    • pp.7-21
    • /
    • 1984
  • Entrainment and deposition experiments were counducted in fresh water on four groups of sediments: three well-defined sediments of uniform composition and narrow-size distribution (1 to 9 um, 10 to 50 um, and 50 to 90 um), and a fourth group which was a mixture of these three sediments. In the entrainment experiments and at a particular stress, the steady-state suspended sediment concentration of the coarse group was the lowest while the concentrations of the fine and medium groups were higher that that of the coarse group but were similar to each other. Deposition experiments generally showed an exponential decrease of suspended sediment concentration with time with the decay time being a function of particle size and applied stress.

  • PDF

비평탄 굴착벽면의 숏크리트 라이닝에 대한 응력해석 (Stress analysis for shotcrete lining on uneven tunnel perimeter)

  • 이승도;문현구
    • 한국터널지하공간학회 논문집
    • /
    • 제17권6호
    • /
    • pp.597-604
    • /
    • 2015
  • 발파공법을 적용한 터널건설 시 발파에 의한 영향으로 굴착벽면은 평탄하지 않으며, 이후 타설되는 숏크리트의 두께가 불규칙하게 된다. 이 경우 균일한 두께의 터널 라이닝에 대한 응력해석 방법의 적용이 적절하지 않을 수 있다. 본 연구는 비평탄 굴착벽면을 모사하기 위해 주기함수를 적용하였으며, 함수의 진폭과 파장을 이용하여 숏크리트 라이닝의 두께변화를 조절할 수 있도록 하였다. 라이닝의 응력해석을 위한 이론해에 주기함수를 적용하여 근사해를 제안하였으며 이를 통해 불규칙한 숏크리트의 응력분포를 검토하였다. 다양한 응력, 물성, 기하학적 조건에 대한 수치해석을 통해 근사해의 적용성을 검증하였다. 숏크리트의 축응력은 초기응력과 지반물성뿐만 아니라 비평탄 굴착벽면에 의한 불규칙한 라이닝에 의한 영향이 큰 것을 확인하였다. 또한 숏크리트의 전단응력은 불규칙한 라이닝의 파장과 초기응력 상태의 영향이 큰 것으로 나타났다. 본 연구의 응력해석을 통해 숏크리트의 두께가 얇은 부분의 응력상태가 균일한 두께의 숏크리트 해석에 의한 결과보다 불리한 것으로 나타나, 숏크리트 타설 시 이에 대한 보완이 필요할 것으로 판단된다.

Effects of thickness variations on the thermal elastoplastic behavior of annular discs

  • Wang, Yun-Che;Alexandrov, Sergei;Jeng, Yeau-Ren
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.839-856
    • /
    • 2013
  • Metallic annular discs with their outer boundary fully constrained are studied with newly derived semi-analytical solutions for the effects of thickness variations under thermal loading and unloading. The plane stress and axisymmetric assumptions were adopted, and the thickness of the disk depends on the radius hyperbolically with an exponent n. Furthermore, it is assumed that the stress state is two dimensional and temperature is uniform in the domain. The solutions include the elastic, elastic-plastic and plastic-collapse behavior, depending on the values of temperature. The von Mises type yield criterion is adopted in this work. The material properties, Young's modulus, yield stress and thermal expansion coefficient, are assumed temperature dependent, while the Poisson's ratio is assumed to be temperature independent. It is found that for any n values, if the normalized hole radius a greater than 0.6, the normalized temperature difference between the elastically reversible temperature and plastic collapse temperature is a monotonically decreasing function of inner radius. For small holes, the n values have strong effects on the normalized temperature difference. Furthermore, it is shown that thickness variations may have stronger effects on the strain distributions when temperature-dependent material properties are considered.

벼의 리올러지 특성(特性)(II) -곡립(穀粒)의 압축(壓縮)크리이프- (Rheological Properties of Rough Rice (II) -Compressive Creep of Rough Rice Kernel-)

  • 김만수;김성래;박종민
    • Journal of Biosystems Engineering
    • /
    • 제15권3호
    • /
    • pp.219-229
    • /
    • 1990
  • The compression creep behavior of grains when loaded depends not only on load but also on duration of load application. The most common methods of studying the load-time characteristics of agricultural products is by employing rheological models such as Burger's model. However it is sometimes not sufficient to describe the viscoelastic behavior of grains to be Burger's model. For this reason, this study was conducted to develop the rheological model which represented the creep compliance response of the rough rice kernel and was a function of initial stress applied and time. The effects of the initial stress applied and the moisture content on the compression creep behavior of the rough rice kernel were analyzed. The results were obtained from the study as follows: 1. Since the viscoelastic behavior of the rough rice kernel was nonlinear, the transient and steady state creep compliance was satisfactorily modelled as follows: $$J({\sigma},t)=A{\sigma}^B[C+Dt-exp(-Ft)]$$ But, for the every stress applied, the compression creep behavior of the samples tested can be well described by Burger's model respectively. 2. The creep compliance, the instantaneous elastic strain, the retarded elastic strain and the viscous strain of the sample tested generally increased in magnitude with increasing the applied initial stress and the moisture content used in the tests. At low moisture content, the creep compliance for the Japonica-type rough rice kernel Was a little higher than those for Indica-type and at high moisture content, vice versa at high moisture content. 3. The retardation times of the samples had not an uniform tendency by the initial stress and the moisture content. The retardation times ranged from 0.66 to 6.76 seconds, and the creep progressed from transient to steady state at a relatively high rate. 4. The less viscous strain than the instantaneous elastic strain for the samples tested indicated that rough rice kernel behaved as a viscoelastic body characterized by elasticity than viscosity.

  • PDF

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • 제56권1호
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study

  • Farzampour, Alireza;Eatherton, Matthew R.;Mansouri, Iman;Hu, Jong Wan
    • Smart Structures and Systems
    • /
    • 제23권4호
    • /
    • pp.329-335
    • /
    • 2019
  • Structural fuses are made up from oriented steel plates to be used to resist seismic force with shear loading resistance capabilities. The damage and excessive inelastic deformations are concentrated in structural fuses to avoid any issues for the rest of the surrounding elements. Recently developed fuse plates are designed with engineered cutouts leaving flexural or shear links with controlled yielding features. A promising type of link is proposed to align better bending strength along the length of the link with the demand moment diagram is a butterfly-shaped link. Previously, the design methodologies are purely based on the flexural stresses, or shear stresses only, which overestimate the dampers capability for resisting against the applied loadings. This study is specifically focused on the optimized design methodologies for commonly used butterfly-shaped dampers. Numerous studies have shown that the stresses are not uniformly distributed along the length of the dampers; hence, the design methodology and the effective implementation of the steel need revisions and improvements. In this study, the effect of shear and flexural stresses on the behavior of butterfly-shaped links are computationally investigated. The mathematical models based on von-Mises yielding criteria are initially developed and the optimized design methodology is proposed based on the yielding criterion. The optimized design is refined and investigated with the aid of computational investigations in the next step. The proposed design methodology meets the needs of optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel.

다중면 하중하에 정방향 대층구조를 가진 격자재료의 연속적인 소성모델 (Continuum Based Plasticity Models for Cubic Symmetry Lattice Materials Under Multi-Surface Loading)

  • 선우현;허종완
    • 복합신소재구조학회 논문집
    • /
    • 제2권3호
    • /
    • pp.1-11
    • /
    • 2011
  • 본 연구에서는 하위 요소로(sub-element) 구성된 3차원 대칭 단위 요소들로 조합된 트러스 격자 구조물의 연속적인 물성치를 제안하였다. 개별적인 트러스 격자 물성치는 균질화 작업을 통하여 유효한 응력과 변형률 관계로 이루어진 연속적인 물성치 모델로 나타낼 수 있다. 미시적인 규모(micro scale) 스트럿의 인장이나 압축 응답에 의한 축강성은 전체 격자재료의 대부분의 강도를 차지하고, 이러한 스트럿의 부피 분율(fraction)은 효과적인 강도뿐만 아니라 복제 가능한 단위 요소로 이루어진 격자판의 상대밀도에 큰 영향을 주었다. 그러므로 균질한 강성부재로 구성된 연속적인 구성모델은 미시적인 규모로 간주되는 스트럿의 강도, 내부응력 상태 및 부피 분율과 관련된 역학적인 특성들을 포함하고 있다는 것을 확인할 수 있었다. 미시적인 규모의 응력에서 소성흐름은 균질한 구성식에서 파생된 거시적인 규모에서의 (macro-scale)응력 표면에 있는 연속적인 응력함수의 영역을 확장한다. 따라서 본 연구를 통하여 3차원 대칭 단위요소 구조물의 기본 기하학을 조사하고 압력에 의존적인 마크로 규모에서의 (macro-scale) 응력함수를 예측하는 연속적인 소성모델을 공식화하였다.

Prediction of chloride diffusion coefficient of concrete under flexural cyclic load

  • Tran, Van Mien;Stitmannaithum, Boonchai;Nawa, Toyoharu
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.343-355
    • /
    • 2011
  • This paper presented the model to predict the chloride diffusion coefficient in tension zone of plain concrete under flexural cyclic load. The fictitious crack based analytical model was used together with the stress degradation law in cracked zone to predict crack growth of plain concrete beams under flexural cyclic load. Then, under cyclic load, the chloride diffusion, in the steady state and one dimensional regime, through the tension zone of the plain concrete beam, in which microcracks were formed by a large number of cycles, was simulated with assumptions of continuously straight crack and uniform-size crack. The numerical analysis in terms of the chloride diffusion coefficient, $D_{tot}$, normalized $D_{tot}$, crack width and crack length was issued as a function of the load cycle, N, and load level, SR. The nonlinear model as regarding with the chloride diffusion coefficient in tension zone and the load level was proposed. According to this model, the chloride diffusion increases with increasing load level. The predictions using model fit well with experimental data when we adopted suitable crack density and tortuosity parameter.