• Title/Summary/Keyword: uniform exhaust

Search Result 70, Processing Time 0.027 seconds

Comparison of Two Different Smoke Extraction Schemes of Transversely Ventilated Tunnel Fire

  • Rie, Dong-Ho;Kim, Hyung-Taek;Yoo, Ji-Oh;Shin, Hyun-Jun;Yoon, Sung-Wook
    • International Journal of Safety
    • /
    • v.4 no.2
    • /
    • pp.30-35
    • /
    • 2005
  • In case of tunnel fire, one of the most effective facilities to save lives is the smoke control system. In this study, two different smoke extraction schemes of transversely ventilated tunnel were compared. One is the smoke extraction using the fixed exhaust ports on the false ceiling to achieve the uniform and distributed smoke extraction (uniform exhaust). The other is that using the remote controlled smoke extraction where only vents close to the fire is opened whereas the others are closed to enhance the limitation of the smoke spread (localized exhaust). A number of numerical simulations were performed to find out the optimal smoke extraction rate at each smoke extraction scheme to allow the tunnel users to escape to the safe area without endangering their lives by smoke.

Estimation of Hydrocarbon Oxidation by Measuring He Concentrations in an SI Engine Exhaust Port (프로판 엔진의 배기 포트에서 탄화수소 산화율 추정)

  • Yi, Hyung-Seung;Park, Jong-Bum;Min, Kyoung-Doug;Kim, Eung-Seo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.660-667
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, concentrations of individual HC species were measured in exhaust process, the degree of oxidation were obtained. Using a solenoid-driven fast sampling system on single-cylinder research engine fueled with 94% propane, the profiles of unburned hydrocarbons (HCs) and non-fuel HCs with a propane fueled engine were obtained from several locations in the exhaust port during the exhaust process. The sampled gases were analyzed using a gas chromatography of HC species with 4 or lesser carbon atoms. The change of total HC concentration and HC fractions of major components through the exhaust port were discussed. The results showed that non-uniform distribution of HC concentration existed around the exhaust valve and changed with time, and that the exhaust gas exhibited nearly uniform concentration profile at port exit, which was due to mixing and oxidation. Also it could be known that bulk gas with relatively high HC concentration came out through the bottom of the exhaust valve. To estimate the mass-based degree of HC oxidation in the exhaust port from measured HC concentrations, a 3-zone diagnostic cycle simulation and plug flow modeling were used. The degree of oxidation ranged between 26 % and 36 % corresponding to the engine operation conditions.

A Study on the Fluid Dynamic of Catalytic Converter in Exhaust Pipe

  • Wangwenhai, Wangwenhai;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.114-118
    • /
    • 2014
  • The need to maximize the exhaust pipe inside surface and to minimize exhaust resistance And Find the best point between the exhaust and the duration of contact between the two surfaces. Exhaust gas mass flow On the whole cross section of catalytic converters more uniform distribution will contribute to its usability. Based on the flow rate of fluid traces given color, Exhaust fluid resistance in the porous catalyst can be estimated, from the efficiency of the catalytic converter that is very important.

Control Method to Ensure Uniform Exhaust Function by Household of Apartment House (공동주택의 세대별 균등 배기량을 확보 하는 제어방법에 관한 연구)

  • Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.12
    • /
    • pp.628-637
    • /
    • 2017
  • This study was conducted to present an effective control method for the common duct system to uniformly discharge volume flow rate exhausted from the kitchen and bathroom of each household in an apartment regardless of the position of household. Since the common duct system is installed vertically and the ventilator is installed in the terminal, the static pressure of each household decreases when vertical height increases. Therefore, the volume flow rate exhausted from each household is different. In order to improve such a phenomenon, a constant air volume damper shall be installed in a branch duct coupled with a common vertical duct system. The selected ventilator should also be able to handle the maximum volume flow rate considering diversity factor. Therefore, a uniform volume flow rate must be exhausted from all households where the hood is operated. This paper mainly focuses on suggestion of an optimum exhaust control method by comparing exhaust performance of each household according to the presence or absence of a constant air volume damper.

LDV Measurement, Flow Visualization and Numerical Analysis of Flow Distribution in a Close-Coupled Catalytic Converter

  • Kim, Duk-Sang;Cho, Yong-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2032-2041
    • /
    • 2004
  • Results from an experimental study of flow distribution in a close-coupled catalytic converter(CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC.

A Study on the Effective Fire and Smoke Control in Road-Tunnel with Semi-Transverse Ventilation (도로터널 화재시 대배기구 환기방식에서의 배연 연구)

  • Jeon, Yong-Han;Han, Sang-Cheol;Yoo, Oh-Ji;Kim, Nam-Jin;Seo, Tae-Boem;Kim, Jong-Yoon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1244-1250
    • /
    • 2009
  • In this study it is intended to review the moving characteristics of smoke by performing visualization for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173\;m^3/s$, $236\;m^3/s$ for the distance of the smoke moving which can limit the distance to 250m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

  • PDF

A study on the effective fire and smoke control in transverse oversized exhaust ventilation (횡류식 선택대배기환기에서의 배연특성에 관한 연구)

  • Han, Sang-Pil;Jeon, Yong-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.451-462
    • /
    • 2011
  • The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume with scaled-model and simulation when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173m^3/s$, $236m^3/s$ for the distance of the smoke moving which can limit the distance to 250 m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

Optimization of the Design of Large Ducts with the Space Constraint in 500MW Power Plant (500MW 발전소에서 협소 공간 내 대형 덕트 설계의 최적화)

  • Hwang, Woo-Hyeon;Lee, Kyung-Ok;Cho, Yong-Ki
    • Journal of Environmental Science International
    • /
    • v.18 no.7
    • /
    • pp.755-765
    • /
    • 2009
  • Some sections of the exhaust system to determine the shape of the duct is to suffer the difficulties by space constraints to install new equipment of the environment post-treatment for existing operation of the power plants. In this paper the large duct in flue gas desulfurization equipments of the 500MW coal-fired power plant on the current operation is numerically analyzed from induced draft fan exit to booster up fan inlet section which is in the narrow space of the exhaust system with four times bending and is connected to emergency duct to bypass the exhaust gas on the emergency operation. The procedure and method using computational fluid dynamics are proposed to maintain the stability of the guide vane with the uniform flow and a minimum pressure loss of exhaust gas in the case of normal and emergency operation between the direction of the flow of exhaust gas duct at different.

A Study on Effect of Recirculated Exhaust Gas upon Wear of Cylinder Liner and Piston in Diesel Engines

  • Bae, Myung-Whan;Tsuchiya, Kazuo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1524-1532
    • /
    • 2001
  • The effects of recirculated exhaust gas on the wear of cylinder liner and piston were experimentally investigated by a two-cylinder, four cycle, indirect injection diesel engine operating at 75% lo ad and 1600 rpm. For the purpose of comparison between the wear rates of the two cylinders with and without EGR, the recirculated exhaust gas was sucked into one of two cylinders after the soot in exhaust emissions was removed by an intentionally designed cylinder-type scrubber equipped with 6 water injectors(A water injector has 144 nozzles of 1.0 mm diameter), while only the fresh air was inhaled into the other cylinder. These experiments were carried out with the fuel injection timing fixed at 15.3$^{\circ}$ BTDC. It was found that the mean wear rate of cylinder liner with EGR was greater in the measurement positions of the second half than those of the first half, that the mean wear rate without EGR was almost uniform regardless of measurement positions, and that the wear rate of piston skirt with EGR increased a little bit, but the piston head diameter increased, rather than decreased, owing to soot adhesion and erosion wear, and especially larger with EGR.

  • PDF

Analysis of Acoustical Performance of Exhaust System by Lattice Filter (격자필터에 의한 배기계의 소음특성 해석)

  • Hwang, Won-Gul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.126-135
    • /
    • 1995
  • An exhaust muffler is one of the simple and effective means to meet the demand for a quiet vehicle, and it deserves a close attention to effectively reduce the engine noise. The transfer function technique is one of the tools that have been used to analyze the noise characteristics of the exhaust muffler. In this paper we obtained a transfer function using the forward-going and backward-going components of sound pressure in the exhaust muffler, which is compatible wiht lattice filter algorithm. This form of transfer function is obtained for the basic elements of a muffler, such as uniform tube, open termin- ation, closed termination, anechoic termination, expansion, contraction, extended-tube resonator, hole, Helmholtz resonator, and concentric hole-cavity resonator. The results are combined to produce the transfer function of various types of mufflers. With this transfer function we calculate the transmission and insertion losses of mufflers, and examined the effects of various design parameters. Comparisons were made between the calculation and experimental results, which showed a good agreement, and we conclude that the transfer function of lattice form can be used to analyze the noise characteristics of the exhaust mufflers.

  • PDF