• 제목/요약/키워드: uniform deformation theory

검색결과 146건 처리시간 0.024초

A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams

  • Meradjah, Mustapha;Bouakkaz, Khaled;Zaoui, Fatima Zohra;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.269-282
    • /
    • 2018
  • In this paper, a new displacement field based on quasi-3D hybrid-type higher order shear deformation theory is developed to analyze the static and dynamic response of exponential (E), power-law (P) and sigmoïd (S) functionally graded beams. Novelty of this theory is that involve just three unknowns with including stretching effect, as opposed to four or even greater numbers in other shear and normal deformation theories. It also accounts for a parabolic distribution of the transverse shear stresses across the thickness, and satisfies the zero traction boundary conditions at beams surfaces without introducing a shear correction factor. The beam governing equations and boundary conditions are determined by employing the Hamilton's principle. Navier-type analytical solutions of bending and free vibration analysis are provided for simply supported beams subjected to uniform distribution loads. The effect of the sigmoid, exponent and power-law volume fraction, the thickness stretching and the material length scale parameter on the deflection, stresses and natural frequencies are discussed in tabular and graphical forms. The obtained results are compared with previously published results to verify the performance of this theory. It was clearly shown that this theory is not only accurate and efficient but almost comparable to other higher order shear deformation theories that contain more number of unknowns.

Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder

  • Arefi, M.;Rahimi, G.H.
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.1-24
    • /
    • 2014
  • The present study deals with two dimensional electro-elastic analysis of a functionally graded piezoelectric (FGP) cylinder under internal pressure. Energy method and first order shear deformation theory (FSDT) are employed for this purpose. All mechanical and electrical properties except Poisson ratio are considered as a power function along the radial direction. The cylinder is subjected to uniform internal pressure. By supposing two dimensional displacement and electric potential fields along the radial and axial direction, the governing differential equations can be derived in terms of unknown electrical and mechanical functions. Homogeneous solution can be obtained by imposing the appropriate mechanical and electrical boundary conditions. This proposed solution has capability to solve the cylinder structure with arbitrary boundary conditions. The previous solutions have been proposed for the problem with simple boundary conditions (simply supported cylinder) by using the routine functions such as trigonometric functions. The axial distribution of the axial displacement, radial displacement and electric potential of the cylinder can be presented as the important results of this paper for various non homogeneous indexes. This paper evaluates the effect of a local support on the distribution of mechanical and electrical components. This investigation indicates that a support has important influence on the distribution of mechanical and electrical components rather than a cylinder with ignoring the effect of the supports. Obtained results using present method at regions that are adequate far from two ends of the cylinder can be compared with previous results (plane elasticity and one dimensional first order shear deformation theories).

A new nonlocal trigonometric shear deformation theory for thermal buckling analysis of embedded nanosize FG plates

  • Khetir, Hafid;Bouiadjra, Mohamed Bachir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • 제64권4호
    • /
    • pp.391-402
    • /
    • 2017
  • In this paper, a new nonlocal trigonometric shear deformation theory is proposed for thermal buckling response of nanosize functionally graded (FG) nano-plates resting on two-parameter elastic foundation under various types of thermal environments. This theory uses for the first time, undetermined integral variables and it contains only four unknowns, that is even less than the first shear deformation theory (FSDT). It is considered that the FG nano-plate is exposed to uniform, linear and sinusoidal temperature rises. Mori-Tanaka model is utilized to define the gradually variation of material properties along the plate thickness. Nonlocal elasticity theory of Eringen is employed to capture the size influences. Through the stationary potential energy the governing equations are derived for a refined nonlocal four-variable shear deformation plate theory and then solved analytically. A variety of examples is proposed to demonstrate the importance of elastic foundation parameters, various temperature fields, nonlocality, material composition, aspect and side-to-thickness ratios on critical stability temperatures of FG nano-plate.

Closed form solution for displacements of thick cylinders with varying thickness subjected to non-uniform internal pressure

  • Eipakchi, H.R.;Rahimi, G.H.;Esmaeilzadeh Khadem, S.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.731-748
    • /
    • 2003
  • In this paper a thick cylindrical shell with varying thickness which is subjected to static non-uniform internal pressure is analyzed. At first, equilibrium equations of the shell have been derived by the energy principle and by considering the first order theory of Mirsky-Herrmann which includes transverse shear deformation. Then the governing equations which are, a system of differential equations with varying coefficients have been solved analytically with the boundary layer technique of the perturbation theory. In spite of complexity of modeling the conditions near the boundaries, the method of this paper is very capable of providing a closed form solution even near the boundaries. Displacement predictions are in a good agreement with the calculated finite elements and other analytical results. The convergence of solution is very fast and the amount of calculations is less than the Frobenius method.

Post-buckling of higher-order stiffened metal foam curved shells with porosity distributions and geometrical imperfection

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Barati, Mohammad Reza;Hamouda, A.M.S.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.567-578
    • /
    • 2020
  • Based on third-order shear deformation shell theory, the present paper investigates post-buckling properties of eccentrically stiffened metal foam curved shells/panels having initial geometric imperfectness. Metal foam is considered as porous material with uniform and non-uniform models. The single-curve porous shell is subjected to in-plane compressive loads leading to post-critical stability in nonlinear regime. Via an analytical trend and employing Airy stress function, the nonlinear governing equations have been solved for calculating the post-buckling loads of stiffened geometrically imperfect metal foam curved shell. New findings display the emphasis of porosity distributions, geometrical imperfectness, foundation factors, stiffeners and geometrical parameters on post-buckling properties of porous curved shells/panels.

Investigating dynamic stability of metal foam nanoplates under periodic in-plane loads via a three-unknown plate theory

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권4호
    • /
    • pp.297-314
    • /
    • 2019
  • Dynamic stability of a porous metal foam nano-dimension plate on elastic substrate exposed to bi-axial time-dependent forces has been studied via a novel 3-variable plate theory. Various pore contents based on uniform and non-uniform models have been introduced. The presented plate model contains smaller number of field variables with shear deformation verification. Hamilton's principle will be utilized to deduce the governing equations. Next, the equations have been defined in the context of Mathieu-Hill equation. Correctness of presented methodology has been verified by comparison of derived results with previous data. Impacts of static and dynamical force coefficients, non-local coefficient, foundation coefficients, pore distributions and boundary edges on stability regions of metal foam nanoscale plates will be studied.

Displacements and stresses in pressurized thick FGM cylinders with exponentially varying properties based on FSDT

  • Ghannad, Mehdi;Gharooni, Hamed
    • Structural Engineering and Mechanics
    • /
    • 제51권6호
    • /
    • pp.939-953
    • /
    • 2014
  • Using the infinitesimal theory of elasticity and analytical formulation based on the first-order shear deformation theory (FSDT) is presented for axisymmetric thick-walled cylinders made of functionally graded materials under internal and/or external uniform pressure. The material is assumed to be isotropic heterogeneous with constant Poisson's ratio and radially exponentially varying elastic modulus. At first, general governing equations of the FGM thick cylinders are derived by assumptions of the FSDT. Then the obtained equations are solved under the generalized clamped-clamped conditions. The results are compared with the findings of both FSDT and finite element method (FEM).

Buckling of sandwich plates with FG-CNT-reinforced layers resting on orthotropic elastic medium using Reddy plate theory

  • Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • 제23권6호
    • /
    • pp.623-631
    • /
    • 2017
  • Present paper deals with the temperature-dependent buckling analysis of sandwich nanocomposite plates resting on elastic medium subjected to magnetic field. The lamina layers are reinforced with carbon nanotubes (CNTs) as uniform and functionally graded (FG). The elastic medium is considered as orthotropic Pasternak foundation with considering the effects of thermal loading on the spring and shear constants of medium. Mixture rule is utilized for obtaining the effective material properties of each layer. Adopting the Reddy shear deformation plate theory, the governing equations are derived based on energy method and Hamilton's principle. The buckling load of the structure is calculated with the Navier's method for the simply supported sandwich nanocomposite plates. Parametric study is conducted on the combined effects of the volume percent and distribution types of the CNTs, temperature change, elastic medium, magnetic field and geometrical parameters of the plates on the buckling load of the sandwich structure. The results show that FGX distribution of the CNTs leads to higher stiffness and consequently higher buckling load. In addition, considering the magnetic field increases the buckling load of the sandwich nanocomposite plate.

Higher order static analysis of truncated conical sandwich panels with flexible cores

  • Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1333-1354
    • /
    • 2015
  • A higher order analytical solution for static analysis of a truncated conical composite sandwich panel subjected to different loading conditions was presented in this paper which was based on a new improved higher order sandwich panel theory. Bending analysis of sandwich structures with flexible cores subjected to concentrated load, uniform distributed load on a patch, harmonic and uniform distributed loads on the top and/or bottom face sheet of the sandwich structure was also investigated. For the first time, bending analysis of truncated conical composite sandwich panels with flexible cores was performed. The governing equations were derived by principle of minimum potential energy. The first order shear deformation theory was used for the composite face sheets and for the core while assuming a polynomial description of the displacement fields. Also, the in-plane hoop stresses of the core were considered. In order to assure accuracy of the present formulations, convergence of the results was examined. Effects of types of boundary conditions, types of applied loads, conical angles and fiber angles on bending analysis of truncated conical composite sandwich panels were studied. As, there is no research on higher order bending analysis of conical sandwich panels with flexible cores, the results were validated by ABAQUS FE code. The present approach can be linked with the standard optimization programs and it can be used in the iteration process of the structural optimization. The proposed approach facilitates investigation of the effect of physical and geometrical parameters on the bending response of sandwich composite structures.

Time-dependent creep analysis and life assessment of 304 L austenitic stainless steel thick pressurized truncated conical shells

  • Kashkoli, Mosayeb Davoudi;Nejad, Mohammad Zamani
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.349-362
    • /
    • 2018
  • This paper presents a semi-analytical solution for the creep analysis and life assessment of 304L austenitic stainless steel thick truncated conical shells using multilayered method based on the first order shear deformation theory (FSDT). The cone is subjected to the non-uniform internal pressure and temperature gradient. Damages are obtained in thick truncated conical shell using Robinson's linear life fraction damage rule, and time to rupture and remaining life assessment is determined by Larson-Miller Parameter (LMP). The creep response of the material is described by Norton's law. In the multilayer method, the truncated cone is divided into n homogeneous disks, and n sets of differential equations with constant coefficients. This set of equations is solved analytically by applying boundary and continuity conditions between the layers. The results obtained analytically have been compared with the numerical results of the finite element method. The results show that the multilayered method based on FSDT has an acceptable amount of accuracy when one wants to obtain radial displacement, radial, circumferential and shear stresses. It is shown that non-uniform pressure has significant influences on the creep damages and remaining life of the truncated cone.