• Title/Summary/Keyword: unified strength failure criterion

Search Result 2, Processing Time 0.019 seconds

Elasto-plastic solution for cavity expansion problem in anisotropic and drained soil mass

  • Li, Chao;Zou, Jin-feng;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.513-522
    • /
    • 2019
  • This study presents an elasto-plastic (EP) solution for drained cavity expansion on the basis of unified strength failure criterion and considers the influence of initial stress state. Because of the influence of initial consolidation of soil mass, the initial stress may be anisotropic in the natural soil mass. In addition, the undrained hypothesis is usually used in the calculation of cavity expansion problem, but most of the cases are in the drained situation in practical engineering. Eventually, the published solution and the presented solution are compared to verify the suitability of the study.

Unified Method for Nonlinear Finite Element Analysis of RC Planar Members (통합방법을 이용한 철근콘크리트부재의 비선형 유한요소해석)

  • 박홍근
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.2
    • /
    • pp.133-144
    • /
    • 1997
  • Concrete plasticity models fol the analysis of reinforced concrete members in plane stress are studied. The proposed plasticity model for reinforced concrete provides a unified approach combining plasticity theory and damage models. It addresses strength mhancement under rnultiaxial compression. and tensile cracking damage. The model uses multiple failure criteria for compressive crushing and tensile cracking. For tensile cracking behavior. rotating-crack and fixed-crack plasticity models are compared. As crushing failure criterion, the Drucker-Prager and the von Mises models are used for comparison. The model uses now and existing damnge models fbr tension softening, tension stiffening. and compression softening dup to tensilt. cracking. Finite element analyses using the unified method are compatxd with existing rxpcrimcntal r.esults. To vei.ify the proposcd crushing and cracking plasticity models, the experiments have load capacities govc11.nc.d either by compressive crushing of'concrete or by yi~lding of' reinforcing steel.