• Title/Summary/Keyword: uniaxial deformation

Search Result 289, Processing Time 0.025 seconds

A parametric shear constitutive law for reinforced concrete deep beams based on multiple linear regression model

  • Hashemi, Seyed Shaker;Sadeghi, Kabir;Javidi, Saeid;Malakooti, Mahmoud
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.285-294
    • /
    • 2019
  • In the present paper, the fiber theory has been employed to model the reinforced concrete (RC) deep beams (DBs) considering the reinforcing steel bar-concrete interaction. To simulate numerically the behavior of materials, the uniaxial materials' constitutive laws have been employed for reinforcements and concrete and the bond stress-slip between the reinforcing steel bars and surrounding concrete are taken into account. Because of the high sensitivity of DBs to shear deformations, the Timoshenko beam theory has been applied. The shear stress-strain (S-SS) relationship has been defined by the modified compression field theory (MCFT) model. By modeling about 300 RC panels and employing a produced numerical database, a study has been carried out to show the sensitivity of the MCFT model. This is performed based on the multiple linear regression (MLR) models. The results of this research also illustrate how different parameters such as characteristic compressive strength of concrete, yield strength of reinforcements and the percentages of reinforcements in different directions get involved in the shear behavior of RC panels without applying complex theories. Based on the results obtained from the analysis of the MCFT S-SS model, a relatively simplified numerical S-SS model has been proposed. Application of the proposed S-SS model in modeling and analyzing the considered samples indicates that there is a good agreement between the simulated and the experimental test results. The comparison between the proposed S-SS model and the MCFT model indicates that in addition to the advantage of better accuracy, the main advantage of the proposed method is simplicity in application.

An Experimental Study on Crack Propagation in KURT Granite using Acoustic Emission (음향방출기법을 이용한 KURT 화강암의 균열 발생 특성에 관한 실험적 연구)

  • Lee, Kyung-Soo;Kim, Jin-Seop;Choi, Jong-Won;Lee, Chang-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.295-304
    • /
    • 2011
  • The first step in improving our understanding of uncertainties suclt as rock mass strength parameters and deformation modulus in rock masses around high-level radioactive waste disposal repositories, for improved safety, is to study the process of crack development in intact rock. Therefore, in this study, the fracture process and crack development were examined in samples of KURT granite taken from the KAERI Underground Research Tunnel (KURT), based on acoustic emission (AE) and moment tensor analysis. The results show that crack initiation, coalescence, and unstable crack occurred at rock uniaxial compressive strengths of 0.45, 0.73, and 0.84, respectively. In addition, moment tensor analysis indicated that during the early stage of loading, tensile cracks were predominant. With increasing applied stress, the number of shear cracks gradually increased. When the applied stress exceeded the stress level required for crack damage, unstable shear cracks which directly result in failure of the rock were generated along the failure plane.

A Study on the Tripping Behaviour of Stiffened Plate according to the Stiffener type (Stiffener형상에 따른 보강판의 트리핑거동에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.89-94
    • /
    • 2004
  • A steel plated is typically composed of plate panels. The overall failure of the structure is certainly affected and can be governed by the bulking and plastic collapse of these individual members. In the ultimate limit state design, therefore, a primary task is to accurately calculate the buckling and plastic collapse strength of such structural members. Structural elements making up steel palated structures do not work separately, resulting in high degree of redundancy and complexity in contrast to those of steel framed structures. To enable the behavior of such structures to be analyzed, simplifications or idealizations must essentially be made considering the accuracy need and degree of complexity of the analysis to be used. Generally the more complex the analysis the greater is the accuracy that may be obtained. The aim of this study is the investigation of the effect of the tripping behaviour including section characteristic for a plate under uniaxial compression. For this purpose of study, in used elasto-plasticity deformation FEA method are used for this study.

  • PDF

New emerging surface treatment of GFRP Hybrid bar for stronger durability of concrete structures

  • Park, Cheolwoo;Park, Younghwan;Kim, Seungwon;Ju, Minkwan
    • Smart Structures and Systems
    • /
    • v.17 no.4
    • /
    • pp.593-610
    • /
    • 2016
  • In this study, an innovative and smart glass fiber-reinforced polymer (GFRP) hybrid bar was developed for stronger durability of concrete structures. As comparing with the conventional GFRP bar, the smart GFRP Hybrid bar can promise to enhance the modulus of elasticity so that it makes the cracking reduced than the case when the conventional GFRP bar is used. Besides, the GFRP Hybrid bar can effectively resist the corrosion of conventional steel bar by the GFRP outer surface on the steel bar. In order to verify the bond performance of the GFRP hybrid bar for structural reinforcement, uniaxial pull-out test was conducted. The variables were the bar diameter and the number of strands and pitch of the fiber ribs. Tensile tests showed a excellent increase in the modulus of elasticity, 152.1 GPa, as compared to that of the pure GFRP bar (50 GPa). The stress-strain curve was bi-linear, so that the ductile performance could be obtained. For the bond test, the entire GFRP hybrid bar test specimens failed in concrete splitting due to higher shear strength resulting in concrete crushing as a function of bar deformation. Investigation revealed that an increase in the number of strands of fiber ribs enhanced the bond strength, and the pitch guaranteed the bond strength of 19.1 mm diameter hybrid bar with 15.9 mm diameter of core section of deformed steel the ACI 440 1R-15 equation is regarded as more suitable for predicting the bond strength of GFRP hybrid bars, whereas the CSA S806-12 prediction is considered too conservative and is largely influenced by the bar diameter. For further study, various geometrical and material properties such as concrete cover, cross-sectional ratio, and surface treatment should be considered.

Evaluation of the Temperature Dependent Flow Stress Model for Thermoplastic Fiber Metal Laminates (열가소성 섬유금속적층판의 온도를 고려한 유동응력 예측에 대한 연구)

  • Park, E.T.;Lee, B.E.;Kang, D.S.;Kim, J.;Kang, B.S.;Song, W.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.52-61
    • /
    • 2015
  • Evaluation of the elevated temperature flow stress for thermoplastic fiber metal laminates(TFMLs) sheet, comprised of two aluminum sheets in the exterior layers and a self-reinforced polypropylene(SRPP) in the interior layer, was conducted. The flow stress as a function of temperature should be evaluated prior to the actual forming of these materials. The flow stress can be obtained experimentally by uniaxial tensile tests or analytically by deriving a flow stress model. However, the flow stress curve of TFMLs cannot be predicted properly by existing flow stress models because the deformation with temperature of these types of materials is different from that of a generic pure metallic material. Therefore, the flow stress model, which includes the effect of the temperature, should be carefully identified. In the current study, the flow stress of TFMLs were first predicted by using existing flow stress models such as Hollomon, Ludwik, and Johnson-Cook models. It is noted that these existing models could not effectively predict the flow stress. Flow stress models such as the modified Hollomon and modified Ludwik model were proposed with respect to temperatures of $23^{\circ}C$, $60^{\circ}C$, $90^{\circ}C$, $120^{\circ}C$. Then the stress-strain curves, which were predicted using the proposed flow stress models, were compared to the stress-strain curves obtained from experiments. It is confirmed that the proposed flow stress models can predict properly the temperature dependent flow stress of TFMLs.

Rate-Dependence of Off-Axis Tensile Behavior of Cross-Ply CFRP Laminates at Elevated Temperature and Its Simulation

  • Takeuchi, Fumi;Kawai, Masamichi;Zhang, Jian-Qi;Matsuda, Tetsuya
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.57-73
    • /
    • 2008
  • The present paper focuses on experimental verification of the ply-by-ply basis inelastic analysis of multidirectional laminates. First of all, rate dependence of the tensile behavior of balanced symmetric cross-ply T800H/epoxy laminates with a $[0/90]_{3S}$ lay-up under off-axis loading conditions at $100^{\circ}C$ is examined. Uniaxial tension tests are performed on plain coupon specimens with various fiber orientations $[{\theta}/(90-{\theta})]_{3S}$ ($\theta$ = 0, 5, 15, 45 and $90^{\circ}C$) at two different strain rates (1.0 and 0.01%/min). The off-axis stress.strain curves exhibit marked nonlinearity for all the off-axis fiber orientations except for the on-axis fiber orientations $\theta$ = 0 and $90^{\circ}$, regardless of the strain rates. Strain rate has significant influences not only on the off-axis flow stress in the regime of nonlinear response but also on the apparent off-axis elastic modulus in the regime of initial linear response. A macromechanical constitutive model based on a ply viscoplasticity model and the classical laminated plate theory is applied to predictions of the rate-dependent off-axis nonlinear behavior of the cross-ply CFRP laminate. The material constants involved by the ply viscoplasticity model are identified on the basis of the experimental results on the unidirectional laminate of the same carbon/epoxy system. It is demonstrated that good agreements between the predicted and observed results are obtained by taking account of the fiber rotation induced by deformation as well as the rate dependence of the initial Young's moduli.

The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression

  • Zhu, W.C.;Ling, L.;Tang, C.A.;Kang, Y.M.;Xie, L.M.
    • Computers and Concrete
    • /
    • v.9 no.4
    • /
    • pp.257-273
    • /
    • 2012
  • Based on the heterogeneous characterization of concrete at mesoscopic level, Realistic Failure Process Analysis ($RFPA^{3D}$) code is used to simulate the failure process of concrete-filled tubular (CFT) stub columns. The results obtained from the numerical simulations are firstly verified against the existing experimental results. An extensive parametric study is conducted to investigate the effects of different concrete strength on the behaviour and load-bearing capacity of the CFT stub columns. The strength of concrete considered in this study ranges from 30 to 110 MPa. Both the load-bearing capacity and load-displacement curves of CFT columns are evaluated. In particular, the crack propagation during the deformation and failure processes of the columns is predicted and the associated mechanisms related to the increased load-bearing capacity of the columns are clarified. The numerical results indicate that there are two mechanisms controlling the failure of the CFT columns. For the CFT columns with the lower concrete strength, they damage when the steel tube yields at first. By contrast, for the columns with high concrete strength it is the damage of concrete that controls the overall loading capacity of the CFT columns. The simulation results also demonstrate that $RFPA^{3D}$ is not only a useful and effective tool to simulate the concrete-filled steel tubular columns, but also a valuable reference for the practice of engineering design.

Axial compressive behavior of special-shaped concrete filled tube mega column coupled with multiple cavities

  • Wu, Haipeng;Qiao, Qiyun;Cao, Wanlin;Dong, Hongying;Zhang, Jianwei
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.633-646
    • /
    • 2017
  • The compressive behavior of special-shaped concrete filled tube (CFT) mega column coupled with multiple cavities is studied by testing six columns subjected to cyclically uniaxial compressive load. The six columns include three pentagonal specimens and three hexagonal specimens. The influence of cavity construction, arrangement of reinforcement, concrete strength on failure feature, bearing capacity, stiffness, and residual deformation is examined. Experimental results show that cavity construction and reinforcements make it possible to form a combined confinement effect to in-filled concrete, and the two groups of special-shaped CFT columns show good elastic-plastic compressive behavior. As there is no axial bearing capacity calculation method currently available in any Code of practice for special-shaped CFT columns, values predicted by normal CFT column formulas in GB50936, CECS254, ACI-318, EC4, AISCI-LRFD, CECS159, and AIJ are compared with tested values. The calculated values are lower than the tested values for most columns, thus the predicted bearing capacity is safe. A reasonable calculation method by dividing concrete into active and inactive confined regions is proposed. And high accuracy shows in estimating special-shaped CFT columns either coupled with multiple cavities or not. In addition, a finite element method (FEM) analysis is conducted and the simulated results match the test well.

Experimental Investigation on the Non-linearity of Nitrile Butadiene Rubber (Nitrile Butadiene Rubber의 비선형성에 대한 실험적 연구)

  • Yoo, Myung-Ho;Lee, Taek-Sung;Do, Je-Sung;Kwon, Jong-Ho
    • Elastomers and Composites
    • /
    • v.42 no.3
    • /
    • pp.159-167
    • /
    • 2007
  • Hydraulic actuators are used widely for industrial machinery. The seal made from elastomer is used as a core part of the actuator, NBR(nitrile butadiene rubber) materials with high quality of oil resistance and abrasion resistance is used widely, requiring excellent characteristic of sealing. According to applied circumstances, the actuators for industrial machinery are used under different temperature situations. In this study, three different kinds of NBR, which is Hs70, 80, 90 are determined as one of hydraulic materials. An experimental investigation is performed to confirm the non-linearity under different temperature ($-10^{\circ}C,\;20^{\circ}C,\;80^{\circ}C,\;100^{\circ}C$) situation, material constants for finite element analysis and plastic deformation in accordance with Load-unload.

Numerical Simulation of Membrane of LNG Insulation System using User Defined Material Subroutine (사용자지정 재료 서브루틴을 활용한 LNG선박 단열시스템 멤브레인의 수치해석)

  • Kim, Jeong-Hyeon;Kim, Seul-Kee;Kim, Myung-Soo;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.265-271
    • /
    • 2014
  • 304L stainless steel sheets are used as a primary barrier for the insulation of membrane-type liquefied natural gas(LNG) carrier cargo containment system. 304L stainless steel is a transformation-induced-plasticity(TRIP) steel that exhibits complex material behavior, because it undergoes phase transformation during plastic deformation. Since the TRIP behavior is very important mechanical characteristics in a low-temperature environment, significant amounts of data are available in the literature. In the present study, a uniaxial tensile test for 304L stainless steel was performed to investigate nonlinear mechanical characteristics. In addition, a viscoplastic model and damage model is proposed to predict material fractures under arbitrary loads. The verification was conducted not only by a material-based comparative study involving experimental investigations, but also by a structural application to the LNG membrane of a Mark-III-type cargo containment system.