• Title/Summary/Keyword: uniaxial deformation

Search Result 289, Processing Time 0.032 seconds

Evolution of Orthotropic Anisotropy by Simple Shear Deformation (전단변형에 의한 직교이방성의 변화)

  • 김권희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.413-423
    • /
    • 1991
  • Multiaxial loading by combinations of tension-torsion-internal pressure have been applied to the thins-walled tubular specimens prepared from cold drawn tubes of SAE 1020 steel. Prior to the multiaxial loading, each specimen has been twisted to different shear strains. Uniaxial tensile yield stresses measured at different angles to the tube axis clearly show that the initial orthotropic symmetry is maintained during twisting. The orthotropy axes are observed to rotate with shear strains. The plane stress yield locus measured for each twisted specimens show that yield surface shape does not remain similar during twisting and thus anisotropic work hardening is not a function of only plastic work.

The Rate Dependent Deformation Behavior of AISI Type 304 Stainless Steel at Room Temperature (304 스테인리스강의 점소성 특성에 관한 연구)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.2 s.92
    • /
    • pp.101-106
    • /
    • 2007
  • Uniaxial displacement controlled tests were performed on annealed Type 304 stainless steel at room temperature. A servo-controlled testing machine and strain measurement on the gage length were employed to measure the response to a given input. The test results exhibit that the flow stress increases nonlinearly with the strain rate and the relaxed stress at the end of the relaxation periods depends strongly on the strain rate preceding the relaxation test. The rate-dependent inelastic deformation behavior is simulated using a new unified viscoplasticity model that has the rate-dependent format of nonlinear kinematic hardening rule, which plays a key role in modeling the rate dependence of relaxation behavior. The model does not employ yield or loading/unloading criteria and consists of a flow law and the evolution laws of two tensor and one scalar-valued state variables.

Non-linear Analysis for a Weatherstrip of a Vehicle Door with FE Modeling (자동차 도어 웨더스트립의 유한요소 모델링 및 해석)

  • 김광훈;문병영;김병수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.38-41
    • /
    • 2004
  • Weatherstrip seals protect passengers form noise, dust, rain and wind out of the vehicle. The more contact area between a body frame and a weatherstrip, the higher efficiency of sealing. A weatherstrip is a sort of an elastomer. Mechanical properties of the weatherstrip is obtained by uniaxial tension test. In this study, nonlinear finite element(FE) analysis is performed to obtain displacements and contact shapes of the weatherstrip. The FE model is developed by using Ogden-foam formulation. In the results of nonlinear FE analysis, the most valuable deformation of the weatherstrip occurred when displacement control value reaches 7.2mm. Severe deformation is observed as the displacement control value become more increased.

  • PDF

Deformation Analysis on Assembly Process of Silicone Wire Seal for Automobile (자동차용 실리콘 와이어 씰의 조립과정에 관한 변형해석)

  • Kim, Jin-Kwang
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.86-93
    • /
    • 2017
  • Silicone rubber wire seals are widely used in automotive connector systems for waterproofing and so on. The purpose of this paper is to predict and evaluate the sealing performance of wire seals using finite element analysis. The material properties of the rubber seals were determined by the curve fitting of uniaxial tensile test and equibiaxial tensile test data. The response surface method was used to determine the optimum shape of the wire seal. In order to verify the accuracy and reliability of the simulations on the deformation prediction of wire seals, experiments were also carried out.

Finite Element Analysis of the Mandibular Canine for Nonlinear Deformation of the Periodontal Ligament (치주인대의 비선형 거동을 고려한 하악 견치의 유한요소해석)

  • Yang, Hoon-Chul;Kim, Ki-Tae;Ha, Man-Hee;Son, Woo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.550-557
    • /
    • 2003
  • Hyperelastic constitutive equations for nonlinear deformation of the periodontal ligament were investigated. The parameters in the strain energy potentials were obtained from experimental data for uniaxial and shear responses of the human periodontal ligament. The hyperelastic constitutive equations based on two strain energy potentials was also compared with the linear elastic equation, which is recently reported. The best fitted parameters in the strain energy potentials was applied to finite element program (ABAQUS) to simulate special orthodontic treatment of a mandibular canine.

  • PDF

Constitutive Models for Final Stage Densification of Powder Compacts with Power-Law Creep Deformation (Power-law 크리프 변형을 따르는 분말 성형체의 말기 치밀화 모델)

  • Yang, Hoon-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.930-939
    • /
    • 2004
  • Constitutive models for final stage densification of metal powder compacts with power-law creep deformation were investigated. The constitutive models were implemented into a finite element program (ABAQUS) by using user subroutine CREEP and, from FEM results, useful densification curves were obtained when hydrostatic and uniaxial stress were applied to the powder compacts at various pressures and temperatures. Because the densification behavior varied as the constitutive models, the equivalent stress surface on each constitutive equation was investigated to analyze the difference of densification behavior.

A Study on the Surface Roughness in the A 5032 Sheet Metal Forming (A 5032 판재성형에서 발생하는 표면거칙기에 관한 연구)

  • 박서운;김진무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.546-551
    • /
    • 1997
  • In sheet metal forming, since the surface area of workpiece is apparently larger than the volume of it, the surface condition of the sheet metal is much varied. The formability of sheet metal is decided by the forming limit and the macroscopic suface defect as like fracture and wrinkle, and microscopic asponent, The factors affected in forming limit are stain herdening exponent, strain-rate scnsitivity exponent, anisotropic coefficient. The increasing of surface roughness is decresed the forming limit curve. It is known that the greater plastic deformation the more surface roughness by Kienzle, Osadaka. The purpose of this study is to investigate the influences of surface roughness in a uniaxial tension and the traperzoidal-shaped box drawing.

  • PDF

Thermomechanical buckling of rectangular, shear-deformable, composite laminated plates

  • Ge, Y.S.;Yuan, W.X.;Dawe, D.J.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.4
    • /
    • pp.411-428
    • /
    • 2002
  • The B-spline finite strip method is developed for the prediction of the buckling of rectangular composite laminated plates under the combined action of applied uniaxial mechanical stress and increasing temperature. The analysis is conducted in two stages, namely an in-plane stress analysis in the pre-buckling stage to determine the pre-buckling stresses, followed by a buckling analysis using these determined stresses. The buckling analysis is based on the use of first-order shear deformation plate theory. The permitted lay-up of the laminates is quite general, within the constraint that the plate remains flat prior to buckling, and a wide range of boundary conditions can be accommodated. A number of applications is described and comparison of the results generated using the finite strip method is made with the results of previous studies.

Evaluation of Anisotropic Hardening Models using Two-Step Tension Tests (2단 인장 실험을 통한 이방성 경화 모델의 평가)

  • Ha, J.;Lee, M.G.;Barlat, Frederic
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.372-377
    • /
    • 2012
  • In this study, the plastic flow behaviors of extra deep drawing quality (EDDQ) steel subjected to non-proportional strain paths were investigated. Two-step uniaxial tension tests, in which the first step was performed in the rolling direction (RD) and the subsequent test in different directions in $15^{\circ}$ increments from the RD, were conducted. The experiments clearly showed that stress overshooting and strain hardening stagnation were the dominant features, which were captured reasonably well using a recently proposed distortional hardening model.

A study on the deformation characteristic of heat-treated 6061,7075 aluminum alloy with changes of elevated temperature and strain rate for warm hydroforming (열처리된 알루미늄 6061, 7075 합금의 온간 액압 성형 적용을 위한 온도 및 변형 속도 변화에 따른 변형 특성 연구)

  • Yi H. K.;Moon Y. H.;Sohn S. M.;Lee M. Y.;Suh D. W.;Lee S. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.23-26
    • /
    • 2004
  • The deformation behaviors of fully annealed or T6-treated 6061 and 7075 aluminum tubes are investigated at elevated temperature using uniaxial tensile test. Fully annealed 6061 and 7075 tube, and T6-treated 7075 tube do not show sharp local necking with an elongation of $50\%$ at tensile temperature of $300^{\circ}C$, accordingly, it is expected that warm hydroforming process can be applied. The increase of tensile temperature does not significantly affect the total elongation of T6-treated 6061 tube.

  • PDF