• Title/Summary/Keyword: undrained shear strength

Search Result 229, Processing Time 0.024 seconds

Determination of Undrained Shear Strength of Clayey Soils from Self-Boring Pressuremeter Test (자가굴착식 프레셔미터 시험을 이용한 비배수 전당강도 산정)

  • 장인성;권오순;정충기;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.117-125
    • /
    • 2000
  • 자가굴착식 프레셔미터 시험(Self-Boring Pressuremeter Test, SBPT)은 지반의 교란을 최소화할 수 있기 때문에 점성토의 비배수 전당강도($S_{u}$ )를 비교적 정확하게 평가할 수 있는 방법 중의 하나로 알려져 있으며, 많은 연구자들에 의하여 SBPT 결과로부터 $S_{u}$ 를 산정하는 여러 가지 방법들이 제안되었다. 본 연구에서는 국내 5개지역에서 총 33회의 SBPT를 수행한후, 기존에 제안된 여러 가지 방법들을 이용하여 $S_{u}$ 를 산정하고, 그 중 변형률 경화 거동을 보이는 지반에서의 $S_{u}$ 를 동일 현장에서 수행한 현장베인시험 결과와 비교. 분석하여 각 방법들의 적용성과 신뢰성을 분석하였다. 그리고, $S_{u}$ 산정 결과에 대한 프레셔미터 멤브레인의 유일한 길이의 영향을 수치해석으로 분석하였으며, 그 결과를 이용하여 기존의 접선영 방법(Subtangent method)을 보정하는 식을 제안하였다. 새로이 보정된 방법으로 산정한 $S_{u}$ 를 현장베인시험 결과와 비교하여 개선 효과를 확인하였다.

  • PDF

Characteristics of Undrained Shear Strength of Yangsan Clay (양산점토의 비배수 전단강도 특성)

  • 김길수;임형덕;김대규;이우진
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.259-267
    • /
    • 2001
  • 실내시험으로 구한 점토의 공학적 성질은 샘플링, 운반, 저장, 그리고 성형과정 동안에 발생하는 시료의 교란으로 인해 원지반의 성질과 다르게 측정된다. 본 연구에서는 양산점토에 대한 삼축압축시험($CK_{o}$ UC) 결과를 이용하여 샘플링 방법에 따른 교란의 정도를 평가하였다. 실험에 사용된 시료는 76mm 튜브샘플러, 76mm 피스톤샘플러, 블록샘플러로 채취되었으며, 시료의 교란정도를 평가하기 위해 각 시료에서 측정된 체적변형률, 비배수 전단강도, Secant Youngs modulus, 그리고 파괴시 간극수압계수를 비교하였다. 시료의 교란정도를 평가하는 것 이외에도 SHANSEP 방법을 이용하여 수행한 $CK_{o}$ U 삼축압축시험 결과를 이용하여 양산점토에 대한 정규화 전단강도($C_{u}$ /$\sigma$$_{vc}$ )와 OCR 관계를 규명하였다. 또, 피에조콘 관입시험, 딜라토메타 시험, 그리고 현장 베인시험결과를 이용하여 구한 양산점토의 비배수 전단강도를 삼축압축시험 결과와 비교하였다.

  • PDF

Stability assessment of unlined tunnels with semicircular arch and straight sides in anisotropic clay

  • Bibhash Kumar;Jagdish P. Sahoo
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.149-163
    • /
    • 2023
  • This paper presents stability evaluation of unlined tunnels with semi-circular arch and straight sides (SASS) driven in non-homogeneous and anisotropic undrained clay. Numerical analysis has been conducted based on lower bound finite element limit analysis with second order cone programming under plane strain condition. The solutions will be used for the assessment of stability of unlined semi-circular arch tunnels and tunnels in which semi-circular roof is supported over rectangular/square sections. The stability charts have been generated in terms of a non-dimensional factor considering linear variation in undrained anisotropic strength for normally consolidated and lightly over consolidated clay with depth, and constant undrained anisotropic strength for heavily over-consolidated clay across the depth. The effect of normalized surcharge pressure on ground surface, non-homogeneity and anisotropy of clay, tunnel cover to width ratio and height to width ratio of tunnel on the stability factor and associated zone of shear failure at yielding have been examined and discussed. The geometry of tunnel in terms of shape and size, and non-homogeneity and anisotropy in undrained strength of clay has been observed to influence significantly the stability of unlined SASS tunnels.

Undrained Shear Behavior of Sandy Soil Mixtures (사질혼합토의 비배수 전단거동 특성)

  • Kim, Ukgie;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.13-24
    • /
    • 2011
  • In the part of geotechnical engineering, soils are classified as either the coarse grained soil or the fine-grained soil following the fine content($F_c$=50%) according to the granularity, and appropriate design codes are used respectively to represent their mechanical behaviour. However, sand-clay mixtures, which are typically referred to as intermediate soils, cannot be easily categorized as either sand or clay. In this study, several monotonic undrained shear tests were carried out on Silica sand fine mixtures with various proportions, and a wide range of soil structures, ranging from one with sand dominating the soil structure to one with fines controlling the behaviour, were prepared using compaction method or pre-consoldation methods in prescribed energy. The shear strength of mixtures below the threshold fines content is observed that as the fines content increases, maximum deviator stress ratio decrease for dense samples while an increase is noted for loose samples. Then, by using the concept of fines content and granular void ratio, the monotonic shear strength of the mixtures was estimated. It was found that the shear behavior of mixtures is greatly dependent on the skeleton structure of sand particles.

A Study on the Prediction of Shear Strength and Determination of the Embarkation Time of Equipment in Dredged Clay Fills (준설점토지반의 전단강도 예측 및 장비투입시기 결정에 관한 연구)

  • Kim, Hong Taek;Kim, Seog Yol;Kang, In Kyu;Kim, Seung Wook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.47-56
    • /
    • 2001
  • In the present study, mainly to determine the embarkation time of equipment in dredged clay fills, an analytical approach is performed to predict a variation of the undrained shear strength in the outermost layer. In this approach, Gibson's non-dimensional linear constant defining the relationship between the void ratio and the effective stress is employed. Also in this approach, void ratios and settlements associated with the volume change due to the self-consolidation and the desiccation shrinkage are evaluated at various elapsed times based on the finite difference solution technique proposed by the authors(1999) and the developed computer program named as DSCON. Predicted results(water content ratio, unit weight and undrained shear strength) are compared with those of laboratory model tests conducted with soil samples obtained from the Koheung site. Based on the predicted undrained shear strengths, possible embarkation time of a equipment is also evaluated. In addition, further analyses are made to indirectly verify the efficiency of the analytical approach proposed in the present study using the PSDDF computer program which can consider the drainage efficiency.

  • PDF

Study on the Undrained Shear Strength Characteristics (반월지역 해성점토의 비배수 전단강도 특성에 관한 연구)

  • 장병욱;박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.3
    • /
    • pp.90-99
    • /
    • 1994
  • To investigate the undrained shear strength characteristics of marine soils with high water content, high compressibility and weak bearing capacity, a series of undrained triaxial tests with pore pressure measurements on undisturbed and disturbed Banwol marine clay in normally consolidated and overconsolidated states is carried out. The results and main conclusions of this study are summarized as follows : 1 . When the consolidation pressure is increased, the maximum deviator stress of disturbed and undistubed clay in normally consolidated state is increased. Pore pressure parameters and internal friction angle of undisturbed clay are greater than those of disturbed clay. 2. The relationship between pore pressure and axial strain of undisturbed clay in normally consolidated state can be expressed as a hyperbolic function like stress-strain relation proposed by Kondner. 3. In the pore pressure-axial strain relation of disturbed clay in normally consolidated state, failure ratio R'f is greatly deviated in the range of 0.7~0.9 proposed by Christian and Desai. 4. For overconsolided clay, when overconsolidation ratio (OCR) is increased, normalized maximum deviator stress is increased and maximum pore pressure is decreased gradually. 5. Cohesion of overconsolidated clay is greater than that of nomally consolidated clay and internal friction angle slightly is decreased. 6. Pore pressure parameter at failure (Af) of overconsolidated clay is varied with OCR, Af becomes negative values with increment in OCR

  • PDF

A Study on Lateral Flow in Soft Grounds under Embankments for Road Constructions (도로 성토로 인한 연약지반의 측방유동에 관한 연구)

  • Kim, Junghoon;Hong, Wonpyo;Lee, Choongmin;Lee, Junwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.17-29
    • /
    • 2012
  • To investigate the characteristics of shear strength and soil deformation in soft grounds, in which various vertical drains were placed, two hundreds field monitoring data of embankments performed in thirteen road construction sites at west and south coastal areas of the Korean Peninsula were collected. At first, the relationship between settlement and lateral displacement was investigated into three stages, in which embankment construction works were divided into initial filling stage, final filling stage and stage after complete filling. And then, the relationship of surcharge pressures and embankment heights with undrained shear strength of soft grounds were investigated. The investigation on settlement and lateral displacement illustrated that the increment of lateral flow to the increment of settlement was low during initial filling stage, but increased gradually with filling and showed largest during final filling stage. After complete filling, the lateral displacement was converged, even though the settlement was increased continuously. Therefore, most of lateral flow was occurred during embankment filling. The ratio of the lateral displacement increment to the settlement increment was 20% for initial filling stage, which coincided with the one presented by Tavenas et al.(1979), but became 50% for final filling stage, which was half of the one presented by Tavenas et al.(1979). However, the ratio reduced to 1% to 9%, which was quite lower than the one presented by Tavenas et al.(1979). Shear deformations, even shear failures, were predicted in soft grounds under initial undrained shear strength, since the design heights of embankments were higher than the yield height in all the sites. However, embankment construction would be possible since the yield height became higher than the design height due to improvement of shear strength of soft grounds with application of the vertical drains. In order to perform safely embankments for road constructions, the embankment loads should be designed not to be exceed 5.14 times the initial undrained shear strength of soft grounds and to be less than 3.0 times the undrained shear strength improved with application of vertical drains in soft grounds.

Evaluation on Undrained Shear Strength considering Consolidation Characteristics for Busan Clay (부산 점토의 압밀특성과 연계한 비배수전단강도 평가)

  • Kim, Ju-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.41-49
    • /
    • 2017
  • In this study, a series of laboratory and in-situ tests such as FVTs and CPTUs were carried out to evaluate undrained shear strength related to quasi overconsolidated characteristics in the near-surface clay at Busan new port. Using unconfined compression and field vane test results, correlation between undrained shear strength and effective overburden pressure, that is, equation of $10+0.262{\sigma}^{\prime}v_0$ (kPa) was obtained. From oedometer tests, OCR is around 1.9 at depths lower than 7 m and OCR below this depth is very close to unit. As stated by Hanzawa et al. (1983), a natural clay deposit in the near-surface, even in normally consolidated state, is more and less apparently overconsolidated due to aging effects such as chemical bonding. Based on this concept, it can be inferred that intercept of equation is mobilized due to chemical bonding irrespective of effective overburden pressure and strength incremental ratio in normally consolidated state is 0.262. From CPTU results, same trend was confirmed. The further study should be necessary to judge whether upper clay is under overconsolidated state due to chemical bonding or not based on the depositional environment.

Debris Flow Mobility: A Comparison of Weathered Soils and Clay-rich Soils (풍화토와 점성토 위주의 토석류 거동과 유동특성)

  • Jeong, Sueng-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.23-27
    • /
    • 2013
  • The risks of debris flows caused by climate change have increased significantly around the world. Recently, landslide disaster prevention technology is more focused on the failure and post-failure dynamics to mitigate the hazards in flow-prone area. In particular, we should define the soil strength and flow characteristics to estimate the debris flow mobility in the mountainous regions in Korea. To do so, we selected known ancient landslides area: Inje, Pohang and Sangju debris flows. Firstly we measured physical and mechanical properties: liquidity index and undrained shear strength by fall cone penetrometer. From the test results, we found that there is a possible relationship between liquidity index and undrained shear strength, $C_{ur}=(1.2/I_L)^{3.3}$, in the selected areas, even though they were different in geological compositions. Assuming that the yield stress is equal to the undrained shear strength at the initiation of sliding, we examined the flow characteristics of weathered soils in Korea. When liquidity index is given as 1, 1.5 and 3.0, the debris flow motion of weathered soils is compared with that of mud-rich sediments, which are known as low-activity clays. At $I_L=1$, it seems that debris flow could reach approximately 250m after 5 minutes. As liquidity index increased from 1 to 3, the debris flow propagation of weathered soils is twice than that of low-activity clays. It may be due to the fact that soil masses mixed with the ambient water and then highly fragmented during flow, thereby leading to the high mobility. The results may help to predict the debris flow propagation and to develop disaster prevention technology at similar geological settings, especially for the weathered soils, in Korea.

A Reliability Study on Estimating Shear Strength of Marine Soil using CPT (Cone 관입시험을 이용한 해양토질의 전단강도 산정에 대한 신뢰도 연구)

  • 이인모;이명재
    • Geotechnical Engineering
    • /
    • v.3 no.2
    • /
    • pp.17-28
    • /
    • 1987
  • Reliability of the cone penetration test (CPT) for estimating shear strength of marine soils is investigated in this paper. For sands, the uncertainty about the angle of internal friction is analyzed. It includes the spatial variation of the soil and the model error in the equation used for interpretation. The most serious uncertainty encountered was the error in the interpretative models. Different methods of interpretation gave quite different values. Subjective opinion was introduced to combine all the interpretative models in a systematic manner. For clays, the undrained Shear Strength from the CPT results is usually =derived by empirical correlations between cone resistance and untrained shear strength from laboratory tests or field vane tests, expressed in terms of cone factor and function of overburden pressure. The uncertainty of the undrained shear strength is caused by data scatter of the cone factor in the correlation, model error of the cone factor, effect of anisotropy, and spatial variability of cone resistance. Among these uncertainties, the most serious one was the data scatter of the cone factor in the .correlation. Between the laboratory test and the field vane test used for correlation, the field vane test was more reliable.

  • PDF