• 제목/요약/키워드: undoped-InSe

검색결과 30건 처리시간 0.023초

수직 Bridgman법에 의한 InSe 단결정의 성장 및 Sn 도핑에 따른 전기.광학적 특성에 관한 연구 (A study on the growth and electrical-optical characteristics of undoped-InSe and Sn-doped Inse single crystals by vertical bridgman method)

  • 정희준;송필근;문동찬;김선태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.481-484
    • /
    • 1999
  • The undoped-InSe and Sn-doped InSe single crystals were grown by vertical Bridgman method and their properties were invesigated. These crystals were obtained by lowering the quartz ampoule for growth in the furnace and growth rate at optimum condition is 0.4mm/hr. The orientations and the crystallinites of these crystals were identified by X-ray diffraction(XRD), double crystal rocking curve(DCRC) and etch-pit density(EPD) measurements. From the Raman spectrum at room temperature, TO, LO modes together with their overtones and combinations were observed. Optical properties were investigated by photoluminescence at 12K and direct band gap of these crystals obtained from optical absorption spectrum. Compared with undoped-lnSe, electrical properties of Sn-doped InSe were increased and the electrical conductivity type were n-type. But electrical properties along growth direction of crystals and radial direction of wafer showed nearly uniform distribution.

  • PDF

수직 Bridgman법에 의한 InSe 단결정의 성장 및 Sn이 첨가된 InSe에서 Zn의 확산에 잔한 연구 (A study on the growth of undoped-lnSe single crystal by vertical Bridgman method and Zn diffusion in Sn-doped InSe)

  • 정회준;문동찬;김선태
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.464-467
    • /
    • 1999
  • The undoped-InSe and Sn-doped InSe single crystals were grown by vertical Bridgman method and their properties were invesigated. The orientations and the crystallinites of these crystals were identified by X-ray diffraction(XRD), double crystal rocking curve(DCRC) and etch-pit density(EPD) measurements. From the Raman spectrum at room temperature, TO, LO modes and together with their overtones and combinations were observed. Optical properties were inves ated by PL at 12K and direct band gap of these crystals obtained from optical absorption spectrum. Compared with undo&-InSe, electrical properties of Sn-doped InSe were increased and the electrical conductivity type were n-type. But electrical properties along growth direction of crystals and radial direction of wafer showed nearly uniform distribution. The Zn diffusion mechanism in InSe could be explained by interstitial-substitutional and vacancy complex models and the activation energy of 1.15-3.01eV were needed for diffusion.fusion.

  • PDF

$CaGa_{2}(S,Se)_{4}:Co^{2+}$$Caln_{2}(S,Se)_{4}:Co^{2+}$ 단결정의 광학적 특성 (Optical Properties of Undoped and Co2+ Doped CaGa2(S,Se)4 and Caln2(S,Se)4 Single Crystals)

  • 김형곤;김남오;김덕태;헌승철;방태환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집
    • /
    • pp.43-48
    • /
    • 2004
  • Undoped and $Co^{2+}$-doped $CaGa_2S_4$, $CaGa_2Se_4$, $CaIn_2S_4$. and $CaIn_2Se_4$ single crystals were grown by using the chemical transport reaction method The temperature dependence of the optical energy gap was well fitted by the Varshni equation. In the Co2+ - doped $CaGa_2S_4$, $CaGa_2Se_4$, $CaIn_2S_4$, and $CaIn_2Se_4$ single crystals, two groups of impurity optical absorption peaks due to Co2+ sited in a Td symmetry were observed in the wavelength regions of 600 900 nm and 1350 1950 nm at 11 K.耀

  • PDF

$Zn_4SnSe_6:Co^{2+}$ 단결정의 성장방법에 관한 연구 (The Single Crystal Growth Method of undoped and Co-doped $Zn_4SnSe_6$)

  • 김덕태;박광호;현승철;방태환;김남오;김형곤
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.27-30
    • /
    • 2006
  • In this paper, the undoped and Co-doped $Zn_4SnSe_6$ single crystals grown by the chemical transporting reaction(CTR) method using iodine as a transporting agent are investigated. For the crystal growth, the temperature gradient of the CTR furnace was kept at $680^{\circ}C$ for the source zone and at $780^{\circ}C$ for the growth zone for 7days. It was found from the analysis of x-ray diffraction that the $Zn_4SnSe_6$ and $Zn_4SnSe_6Co^{2+}$ compounds have a monoclinic structure. The direct optical energy band gap of the $Zn_4SnSe_6$ and $Zn_4SnSe_6Co^{2+}$ single crystals at 300K were found to be 2.146eV and 2.042eV.

  • PDF

HWE 방법에 의한 ZnSe/GaAs(100)의 성장과 특성 (Growth and characterization of ZnSe/GaAs(100) by hot-wall technique)

  • 전경남;고석룡;이경준;정원기;두하영;이춘호
    • 한국결정성장학회지
    • /
    • 제6권1호
    • /
    • pp.56-61
    • /
    • 1996
  • 두 개의 증발료가 설치된 hot wall epitaxy 장치를 제작하고 GaAs 기판위에 undoped ZnSe 박막을 성장하였다. 기판온도 $350^{\circ}C$, 원료부의 온도 $660^{\circ}C$ 근방에서 성장된 경 연박막의 XRD 측정값은 175 $sec^{-1}$의 반치폭을 냐타내 였다. Photoluminescence 측정 결과 neu t tral acceptor bound exciton emission line이 강하게 얻어지는 양질의 박막을 성장하였다.

  • PDF

$Zn_4$$ GeSe_6$$Co^{2+}$를 첨가한 $Zn_4$$ GeSe_6$:$Co^{2+}$단결정의 광학적 특성 (Optical properties of undoped and $Co^{2+}$-doped $Zn_4$$ GeSe_6$ single crystals)

  • 김덕태
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권2호
    • /
    • pp.105-112
    • /
    • 1997
  • Undoped and Co$^{2+}$-doped Zn$_{4}$GeSe$_{6}$ single crystals were grown by the Chemical Transport Reaction method using iodine as a transporting agent. The crystal structure of these compounds determined by X-ray diffraction analysis was monoclinic structure. The direct energy gaps of these compounds were measured and the temperature dependence of the optical energy gap were closely investigated over the temperature range 10-290K. The temperature dependence of the optical energy gap is well presented by the Varshni equation. Also the optical absorption peaks of Zn$_{4}$GeSe$_{6}$ :Co$^{2+}$ single crystal observed, centered at 5437, 6079, 7142, 12950, 13462, 14786 and 15735 $cm^{-1}$ /, can be explained in terms of the electronic transitions of Co$^{2+}$ ions located at Td symmetry of the host materials. According to the crystal-field theory, the crystal-field, Racah and spin-orbit coupling parameters obtained from the absorption bands are given by Dq = 361$cm^{-1}$ /, B = 655$cm^{-1}$ / and .lambda. = 284$cm^{-1}$ / respectively.ively.

  • PDF

$Zn_{4}SnSe_{6}$$Zn_{4}SnSe_{6}:Co^{2+}$ 단결정에서 광학적 에너지 띠 및 열역학적 함수의 온도의존성 연구 (Temperature dependence of optical energy gaps and thermodynamic function of $Zn_{4}SnSe_{6}$ and $Zn_{4}SnSe_{6}:Co^{2+}$ single crystals)

  • 김덕태;김남오;최영일;김병철;김형곤;현승철;김병인;송찬일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.25-30
    • /
    • 2002
  • The ternary semiconducting compounds of the $A_{4}BX_{6}$(A=Cd, Zn, Hg; B=Si, Sn, Ge; X=S, Se, Te) type exhibit strong fluorescence and high photosensitivity in the visible and near infrared ranges, so these are supposed to be materials applicable to photoelectrical devices. These materials were synthesized and single crystals were first grown by Nitsche, who identified the crystal structure of the single crystals. In this paper. author describe the undoped and $Co^{2+}$-doped $Zn_{4}SnSe_{6}$ single crystals were grown by the chemical transport reaction(CTR) method using iodine of $6mg/cm^{3}$ as a transport agent. For the crystal. growth, the temperature gradient of the CTR furnace was kep at $700^{\circ}C$ for the source aone and at $820^{\circ}C$ for the growth zone for 7-days. It was found from the analysis of x-ray diffraction that undoped and $Co^{2+}$-doped $Zn_{4}SnSe_{6}$ compounds have a monoclinic structure. The optical absorption spectra obtained near the fundamental absorption edge showed that these compounds have a direct energy gaps. These temperature dependence of the optical energy gap were closely investigated over the temperature range 10[K]~300[K]

  • PDF

ZnSe, $ZnSe:Ho^{+3}, Mg_{0.15}Zn_{0.85}Se\; 및 Mg_{0.15}Zn_{0.85}Se:Ho^{3+}$ 단결정의 광발광 특성에 관한 연구 (Photoluminescence of Undoped and $Ho^{3+}-Doped ZnSe,\; Mg_{0.15}Zn_{0.85}$Se Single Crystals)

  • 김남오;김형곤;오금곤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제50권9호
    • /
    • pp.434-437
    • /
    • 2001
  • ZnSe, ZnSe:Ho/sup 3+/, Mg/sub x/Zn/sub 1-x/Se and Mg/sub x/Zn/sub 1-x/Se:Ho/sup 3+/ crystals were grown by the chemical transport reaction method. The crystal structures and optical energy band gaps of the single crystals were investigated. Their photoluminescence(PL) spectra were measured at 10 [K]. Sharp emission peaks in the blue-green wavelength range and broad emission peaks in the yellow-red wavelength range were observed. The single crystals doped with 1.0 [mol%] of holmium did not show the sharp emission peaks because of defects which were thought to be originated to the holmium dopant.

  • PDF

화학수송법으로 성장한 $Cd_4GeSe_{6}$$Cd_{4}GeSe_{6}$ : $CO^{2+}$ 단결정에서 에너지 띠 간격의 온도의존성 및 열역학함수 추정 (Temperature Dependence of Energy Gap and Thermodynamic Function Properties of Undoped and Co-doped $Cd_{4}GeSe_{6}$ Sing1e Crystals by Chemical Transport Reaction Method)

  • 김남오;김형곤;김덕태;현승철;오금곤
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권2호
    • /
    • pp.85-90
    • /
    • 2003
  • In this work $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}$ : $Co^{2+}$ single crystals were grown by the chemical transport reaction method and the structure of $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}$ : $Co^{2+}$ single crystals were monoclinic structure. The temperature dependence of optical energy 9ap was fitted well to Varshni equation. Also, the entropy, enthalpy and heat capacity were deduced from the temperature dependence of optical energy gap.

화학수송법으로 성장한 $Cd_{4}GeSe_{6}$$Cd_{4}GeSe_{6}:Co$ 단결정에서 Energy Gap의 온도의존성 및 열역학함수 추정 (Temperature Dependence of Energy Gap and Thermodynamic Function Properties of Undoped and Co-doped $Cd_{4}GeSe_{6}$ Single Crystals by Chemical Transport Reaction Method)

  • 김덕태;김남오;최영일;김병철;김형곤;현승철;김병인;송찬일
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.31-36
    • /
    • 2002
  • In this work $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}:Co^{2+}$ single crystals were grown by the chemical transport reaction method and the structure of $Cd_{4}GeSe_{6}$ and $Cd_{4}GeSe_{6}:Co$ single crystals were monoclinic structure. The temperature dependence of optical energy gap was fitted well to Varshni equation. Also, the entropy, enthalpy and heat capacity were deduced from the temperature dependence of optical energy gap.

  • PDF