• 제목/요약/키워드: underwater work of ocean

검색결과 61건 처리시간 0.024초

수중로봇용 덕트 추진기의 설계 및 성능해석 (Design and Performance Analysis of Ducted Propulsor for Underwater Robot)

  • 김경진;이두형;박원규;박한일
    • 한국해양공학회지
    • /
    • 제26권6호
    • /
    • pp.39-45
    • /
    • 2012
  • Underwater robots are generally used for the construction of seabed structures, deep-sea ecosystem research, ocean energy development, etc. A ducted marine propulsor is widely used for the thruster of an underwater robot because of its collision protection, efficiency increase, cavitation reduction, etc. However, the flow of a ducted propeller is very complex because it involves strong flow interactions between the blade impeller and duct. The present work aimed to design a ducted propeller using 2-D strip theory and CFD analysis. The hydrodynamic forces (i.e. and ) were computed to set the local angle of attack in a spanwise direction of the propeller blade. After the propeller design, performance coefficients such as the thrust, torque, and efficiency were computed to check whether the designed performance was achieved. To validate the present analysis, the thrust was compared with experimental data and good agreement was obtained.

플라이애쉬를 사용한 수중불분리성 콘크리트의 응결에 관한 실험적 연구 (An Experimental Study on the Setting of Antiwashout Underwater concrete Using Fly Ash)

  • 권중현;김봉익
    • 한국해양공학회지
    • /
    • 제15권4호
    • /
    • pp.120-125
    • /
    • 2001
  • This paper describes the effect of fly ash replacement on the setting time of antiwashout underwater concrete, where cement was replaced by 0% to 50%. Experimental work was performed on the condition of sea water and in air to find out the characteristics of setting time between the concretes that were cast in air and cast in 15$^{\circ}C$ of sea water. The experimental results show that the setting time of underwater concrete with 50% replacement was delayed about 10 hours than normal concrete. And it can be concluded that, at the case of underseawater concrete addicted with fly ash, the delayed final setting times are shown as the function Tf=0.069F+7.69, where Tf is the delayed final setting time and F is quantity of fly ash, respectively. These results confirm that the setting time underseawater concrete could be prolonged.

  • PDF

플라이애시 수중불분리성 콘크리트의 수밀성에 관한 실험적 연구 (An Experimental Study on the Water Tightness of Fly Ash Antiwashout Underwater Concrete)

  • 권중현;김봉익
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.40-45
    • /
    • 2008
  • This paper describes the effects of fly ash replacement on the water tightness of antiwashout underwater concrete, which replaced the cement with fly ash from 0% to 30%. The experimental work was performed to find out the depth of permeation of concrete specimens cast in air and cured in 23 $^{\circ}C$ tap water using an open center pressure type of water permeation tester. The results showed that the permeation depth values of antiwashout underwater concrete were deeper than normal concrete, but that an admixture using fly ash during antiwashout underwater concrete casting in air made it more watertight than normal concrete according to the water permeation testing. SEM observations of the specimens of fly ash antiwashout underwater concrete showed that it wasmore packed with structures because of the pozzolan reaction of the fly ash and cement.

플라이애쉬 수중불분리성 콘크리트의 내해수성에 관한 염화물 촉진 시험 (An Experimental Study of Chloride Acceleration on the Seawater Resistance of Fly Ash Antiwashout Underwater Concrete)

  • 권중현;김봉익
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.29-34
    • /
    • 2005
  • This paper describes the effect of fly ash replacement on seawater resistance of anti-washout underwater concrete, which was replaced cement by fly ash from $0\%$ to $50\%$. The experimental work was performed to find out the variations of length and weight of specimens, using a chloride acceleration test in $40\^{\circ}$C The results shaw that the admixture using fly ash on an anti-washcout underwater concrete in the sea environment makes it more durable for the attacks of chloride by seawater. Also, the length of specimens of anti-washout underwater concrete, at age 180 days, increased substantially, compared with normal concrete; however, the mixture in which cement was replaced $50\%$ of fly ash shows $93\%$ reduction of the expansion, compared with the normal anti "washout underwater concrete specimen.

두 개의 하이드로폰을 이용한 수중 음원 방향 추정 및 위치 추정 알고리즘 (Direction and Location Estimating Algorithm for Sound Sources with Two Hydrophones in Underwater Environment)

  • 신재욱;송주만;이석영;최현택;박부견
    • 제어로봇시스템학회논문지
    • /
    • 제19권8호
    • /
    • pp.676-681
    • /
    • 2013
  • For underwater vehicles, the use of sensors such as cameras and laser scanners is limited by the difference in environment compared to robots designed to work on dry land. In underwater environments, if use is made of sound signals, valuable information can be obtained. The most important application is the localization of underwater sound sources. The estimated location of a sound source can be used to control underwater robots or submarines. Thus, the purpose of this research is to estimate the source's direction and location in a noisy underwater environment. The direction of the sound source is obtained using two hydrophones. Furthermore, if we assume that the robot or sound source is moving, the location of the sound source is estimated using more than two estimated directions. The feasibility of the developed algorithm is examined by experiments in a water tank and in the ocean.

ROV의 운동이 고려된 수중 로봇팔의 동적 작업공간 구동 제어 (Dynamic Workspace Control of Underwater Manipulator Considering ROV Motion)

  • 심형원;전봉환;이판묵
    • 제어로봇시스템학회논문지
    • /
    • 제17권5호
    • /
    • pp.460-470
    • /
    • 2011
  • This paper presents a dynamic workspace control method of underwater manipulator considering a floating ROV (Remotely Operated vehicle) motion caused by sea wave. This method is necessary for the underwater work required linear motion control of a manipulator's end-effector mounted on a floating ROV in undersea. In the proposed method, the motion of ROV is modeled as nonlinear first-order differential equation excluded dynamic elements. For online manipulator control achievement, we develop the position tracking method based on sensor data and EKF (Extended Kalman Filter) and the input velocity compensation method. The dynamic workspace control method is established by applying these methods to differential inverse kinematics solution. For verification of the proposed method, experimental data based test of ROV position tracking and simulation of the proposed control method are performed, which is based on the specification of the KORDI deep-sea ROV Hemire.

CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구 (A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis)

  • 정태환;;;이승건
    • 한국해양공학회지
    • /
    • 제23권1호
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

수중 고르기 장비의 건설 공정 및 효율성 분석 (Investigation on Construction Process and Efficiency of Underwater Construction Equipment for Rubble Mound Leveling works)

  • 원덕희;장인성;신창주
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.372-378
    • /
    • 2016
  • 항만 구조물인 케이슨 및 블록 등을 수중에 거치하기 위해서는 기초사석을 투하하고 이 위에 구조물을 설치한다. 이때 기초 사석은 상구구조물을 지지하기 위한 기초 토대로서 사석의 규격, 비중, 중량 모양 및 치수 등이 균일하고 치밀하여야 하며 선정시험을 통과한 사석만을 사용하여 시공하야 한다. 또한 이러한 기초 사석을 고르게 만들어 주는 작업 구조물의 거치 이전에 반드시 이루어 져야 한다. 본 연구에서는 수중 고르기 작업 공정의 무인화를 위하여 수중 고르기 및 굴삭용 무인기계 뿐만 아니라 무인기계화 시공을 위한 원격제어용 운영시스템, 수중 물체 인식 및 수중위치 분석을 위한 수중 환경 모니터링 시스템이 개발되었다. 본 장비는 육상 및 수중 테스트를 통하여 검증을 완료 하여 우수한 성능을 확인하였다. 그러나 현장에 본 장비를 투입하기 위해서는 성능뿐만 아니라 건설 공정의 제안 및 분석 그리고 효율(경제성)이 분석되어야 한다. 본 연구에서는 수중고르기장비의 성능 및 기능, 건설공정절차, 기존의 공법과의 비교 분석하였다. 분석결과 기존의 잠수부를 투입하는 건설공법에 비하여 경제성, 효율성, 안전성이 향상되는 것으로 확인되었다.

양생수에 따른 수중불분리콘크리트의 압축강도특성에 관한 실험적 연구 (An Experimental Study on the Characteristics of Compressive Strength of Antiwashout Underwater Concrete with Curing Water)

  • 윤재범;고창섭;김명식;장희석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.135-138
    • /
    • 1999
  • The objective of this study is to investigate the compressive strength property of antiwashout underwater concrete with curing water through experimental researches. Type of casting and curing water(fresh water, sea water) are used as main experimental parameter, additionally a few variables affecting compressive strength property are used ; water-cement ratio (45%, 48%, 50%, 52%, 55%), and unit weight of admixtures (antiwashout underwater agent ; 0.6%, 0.8%, 1.0%, 1.2%, 1.4% of unit weight of water, superplasticizer ; 0.5%, 1.0%, 1.5%, 2.0%, 2.5% of unit weight of cement)) Compressive strength level of antiwashout underwater concrete which was cast and cured in fresh water is higher than other one. Consequently, incremental modulus has to increase when the antiwashout underwater concrete is made use of underwater work from ocean.

  • PDF

A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle

  • Mohan, Santhakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • 제1권3호
    • /
    • pp.120-135
    • /
    • 2011
  • This paper proposes a model based trajectory tracking control scheme for under-actuated underwater robotic vehicles. The difficulty in stabilizing a non-linear system using smooth static state feedback law means that the design of a feedback controller for an under-actuated system is somewhat challenging. A necessary condition for the asymptotic stability of an under-actuated vehicle about a single equilibrium is that its gravitational field has nonzero elements corresponding to non-actuated dynamics. To overcome this condition, we propose a continuous time-varying control law based on the direct estimation of vehicle dynamic variables such as inertia, damping and Coriolis & centripetal terms. This can work satisfactorily under commonly encountered uncertainties such as an ocean current and parameter variations. The proposed control law cancels the non-linearities in the vehicle dynamics by introducing non-linear elements in the input side. Knowledge of the bounds on uncertain terms is not required and it is conceptually simple and easy to implement. The controller parameter values are designed using the Taguchi robust design approach and the control law is verified analytically to be robust under uncertainties, including external disturbances and current. A comparison of the controller performance with that of a linear proportional-integral-derivative (PID) controller and sliding mode controller are also provided.