• Title/Summary/Keyword: underwater port construction

Search Result 15, Processing Time 0.019 seconds

Study on the Control and Topographical Recognition of an Underwater Rubble Leveling Robot for Port Construction (항만공사용 사석 고르기 수중로봇의 제어 및 지형인식에 관한 연구)

  • Kim, Tae-Sung;Kim, Chi-Hyo;Lee, Jin-Hyung;Lee, Min-Ki
    • Journal of Navigation and Port Research
    • /
    • v.42 no.3
    • /
    • pp.237-244
    • /
    • 2018
  • When underwater rubble leveling work is carried out by a robot, real-time information on the topography around the robot is required for remote control. If the topographical information with respect to the current position of the robot is displayed as a 3D graphic image, it allows the operator to plan the working schedules and to avoid accidents like rollovers. Up until now, the topographical recognition was conducted by multi-beam sonars, which were only used to assess the quality before and after the work and could not be used to provide real-time information for remote control. This research measures the force delivered to the bucket which presses the mound to determine whether contact is made or not, and the contact position is calculated by reading the cylinder length. A variable bang-bang control algorithm is applied to control the heavy robot arms for the positioning of the bucket. The proposed method allows operators to easily recognize the terrain and intuitively plan the working schedules by showing relatively 3-D gratifications with respect to the robot body. In addition, the operating patterns of a skilled operator are programmed for raking, pushing, moving, and measuring so that they are automatically applied to the underwater rubble leveling work of the robot.

A Study on the Maneuvering Area of Ship in Moving at Single Point Mooring (SPM 이안 선박의 조종영역에 관한 연구)

  • Kim, Jin-Soo
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.23
    • /
    • pp.78-97
    • /
    • 2007
  • SPM, which is an abbreviation of Single Point Mooring, also called as SBM(Single Buoy Mooring), is a special buoy besides the quays of the harbor for mooring ships, and is normally a 3m wide cone or cylinder shaped steel drum fixed underwater so it won't move, and is used for mooring cargo-work at outer port by laid-up ships and large crude oil carrier. The work of VLCC SPM mainly is accomplished on the open sea. On the open sea as a result of meteorological condition and the ocean wave influence, When the weather condition is get bed, peremptorily moving to the safety place, because of the gale and the billow, almost happened frequently, the pilot is unable to go on board and the tug is also unable to be used Now because of the bad weather the VLCC SPM moving to the other safety place frequently happened in the ulsan port. the construction of new harbor, it constructed many break water around SPM. So that it is necessary to propose the new standard about how to maneuvering area actually. The standard for handling ranges of the SPM operations was tested and verified by a simulation.. So that it is necessary to propose the new standard about how to maneuvering area actually.

  • PDF

A Study on Evaluating the Possibility of Monitoring Ships of CAS500-1 Images Based on YOLO Algorithm: A Case Study of a Busan New Port and an Oakland Port in California (YOLO 알고리즘 기반 국토위성영상의 선박 모니터링 가능성 평가 연구: 부산 신항과 캘리포니아 오클랜드항을 대상으로)

  • Park, Sangchul;Park, Yeongbin;Jang, Soyeong;Kim, Tae-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1463-1478
    • /
    • 2022
  • Maritime transport accounts for 99.7% of the exports and imports of the Republic of Korea; therefore, developing a vessel monitoring system for efficient operation is of significant interest. Several studies have focused on tracking and monitoring vessel movements based on automatic identification system (AIS) data; however, ships without AIS have limited monitoring and tracking ability. High-resolution optical satellite images can provide the missing layer of information in AIS-based monitoring systems because they can identify non-AIS vessels and small ships over a wide range. Therefore, it is necessary to investigate vessel monitoring and small vessel classification systems using high-resolution optical satellite images. This study examined the possibility of developing ship monitoring systems using Compact Advanced Satellite 500-1 (CAS500-1) satellite images by first training a deep learning model using satellite image data and then performing detection in other images. To determine the effectiveness of the proposed method, the learning data was acquired from ships in the Yellow Sea and its major ports, and the detection model was established using the You Only Look Once (YOLO) algorithm. The ship detection performance was evaluated for a domestic and an international port. The results obtained using the detection model in ships in the anchorage and berth areas were compared with the ship classification information obtained using AIS, and an accuracy of 85.5% and 70% was achieved using domestic and international classification models, respectively. The results indicate that high-resolution satellite images can be used in mooring ships for vessel monitoring. The developed approach can potentially be used in vessel tracking and monitoring systems at major ports around the world if the accuracy of the detection model is improved through continuous learning data construction.

Case studies of shallow marine investigations in Australia with advanced underwater seismic refraction (USR) (최신 수중 탄성파 굴절법(USR)을 이용한 호주의 천부해양탐사 사례연구)

  • Whiteley, Robert J.;Stewart, Simon B.
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2008
  • Underwater seismic refraction with advanced interpretation approaches makes important contributions to shallow marine exploration and geotechnical investigations in Australia's coastal areas. A series of case studies are presented to demonstrate the recent applications of continuous and static USR methods to river crossing and port infrastructure projects at various sites around Australia. In Sydney, static underwater seismic refraction (USR) with bottom-placed receivers and borehole seismic imaging assisted the development of improved geotechnical models that reduced construction risk for a tunnel crossing of the Lane Cove River. In Melbourne, combining conventional boomer reflection and continuous USR with near-bottom sources and receivers improved the definition of a buried, variably weathered basalt flow and assisted dredging assessment for navigation channel upgrades at Geelong Ports. Sand quality assessment with continuous USR and widely spaced borehole information assisted commercial decisions on available sand resources for the reclamation phase of development at the Port of Brisbane. Buried reefs and indurated layers occur in Australian coastal sediments with the characteristics of laterally limited, high velocity, cap layers within lower velocity materials. If these features are not recognised then significant error in depth determination to deeper refractors can occur. Application of advanced refraction inversion using wavefront eikonal tomography to continuous USR data obtained along the route of a proposed offshore pipeline near Fremantle allowed these layers and the underlying bedrock refractor to be accurately imaged. Static USR and the same interpretation approach was used to image the drowned granitic regolith beneath sediments and indurated layers in the northern area of Western Australia at a proposed new berthing site where deep piling was required. This allowed preferred piling sites to be identified, reducing overall pile lengths. USR can be expected to find increased application to shallow marine exploration and geotechnical investigations in Australia's coastal areas as economic growth continues and improved interpretation methods are developed.

An Analytical Study on Rational use of Undersea Space (해저공간의 합리적 활용을 위한 분석적 연구)

  • Won-Jo Jung;Nam-Ki Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.3
    • /
    • pp.147-154
    • /
    • 2023
  • This study aims to determine the necessity, role, utilization, and operation and management plan in relation to the underwater space platform where humans can newly reside. It provides a comprehensive opinion on the need for creating undersea space and operation plans based on opinions of industry-university-affiliated organizations involved in the R&D project of the Ministry of Maritime Affairs and Fisheries for the utilization of undersea space and external experts participating in marine technology development. In this study, a survey was conducted on researchers participating in the construction of a Korean submarine space platform. FGI was conducted on marine technology development experts. Results were then derived. As a result of the analysis, the need for subsea space construction was found to be high. As for the role of subsea space, the most common opinion was to develop technology for utilizing subsea space and to secure marine science research functions. It was found that the creation of subsea space would have a positive impact on the domestic industry, especially the deep-sea development industry and the shipbuilding/offshore structure industry. In terms of utilization, after the end of the seabed space test bed, the response to utilization as a marine observation base and marine ecosystem research had the highest proportion. As for expected inconvenience, discomfort in the psychological environment was the highest. Experts suggest that securing a continuous budget is most important for stable operation in the future and that securing a manpower budget is essential for itemized budgets. In addition, it was judged that it would be appropriate to establish a prior agreement from the time of the prior agreement and prepare a countermeasure before proceeding with the project in order to ensure ownership issues, consignment management issues, and cost issues when using the project after the end of the project.