• Title/Summary/Keyword: underwater image

Search Result 211, Processing Time 0.029 seconds

Underwater Robot Localization by Probability-based Object Recognition Framework Using Sonar Image (소나 영상을 이용한 확률적 물체 인식 구조 기반 수중로봇의 위치추정)

  • Lee, Yeongjun;Choi, Jinwoo;Choi, Hyun-Teak
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.232-241
    • /
    • 2014
  • This paper proposes an underwater localization algorithm using probabilistic object recognition. It is organized as follows; 1) recognizing artificial objects using imaging sonar, and 2) localizing the recognized objects and the vehicle using EKF(Extended Kalman Filter) based SLAM. For this purpose, we develop artificial landmarks to be recognized even under the unstable sonar images induced by noise. Moreover, a probabilistic recognition framework is proposed. In this way, the distance and bearing of the recognized artificial landmarks are acquired to perform the localization of the underwater vehicle. Using the recognized objects, EKF-based SLAM is carried out and results in a path of the underwater vehicle and the location of landmarks. The proposed localization algorithm is verified by experiments in a basin.

Simulation of Time Delay Communication algorithm In the Shallow Underwater Channel

  • Yoon, Byung-Woo;Eren Yildirim, Mustafa
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.44-49
    • /
    • 2011
  • The need of data transmission in oceans and other underwater mediums are increasing day by day, so as the research. The underwater medium is very different from that of air. Propagation of electromagnetic wave in water or underground is very difficult because of the conductivity of the propagation materials. In this case, we usually use acoustic signals as ultrasonic but, they are not easy to transfer long distance with coherent method because of time varying multipaths, Doppler effects and attenuations. So, we use non-coherent methods such as FSK or ASK to communicate between long distances. But, as the propagation speed of acoustic wave is very slow, BW of the channel is narrow. It is very hard to guaranty the enough speed for the transmission of digital image data. In previous studies, we proposed this data communication protocol theoretically. In this paper, an underwater channel is modeled and this protocol is tested in this channel condition. The results show that the protocol is 4-6 times faster than ASK. Some relations and results are shown depending on the data length, channel length, bit rate etc.

Synthesizing Image and Automated Annotation Tool for CNN based Under Water Object Detection (강건한 CNN기반 수중 물체 인식을 위한 이미지 합성과 자동화된 Annotation Tool)

  • Jeon, MyungHwan;Lee, Yeongjun;Shin, Young-Sik;Jang, Hyesu;Yeu, Taekyeong;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.2
    • /
    • pp.139-149
    • /
    • 2019
  • In this paper, we present auto-annotation tool and synthetic dataset using 3D CAD model for deep learning based object detection. To be used as training data for deep learning methods, class, segmentation, bounding-box, contour, and pose annotations of the object are needed. We propose an automated annotation tool and synthetic image generation. Our resulting synthetic dataset reflects occlusion between objects and applicable for both underwater and in-air environments. To verify our synthetic dataset, we use MASK R-CNN as a state-of-the-art method among object detection model using deep learning. For experiment, we make the experimental environment reflecting the actual underwater environment. We show that object detection model trained via our dataset show significantly accurate results and robustness for the underwater environment. Lastly, we verify that our synthetic dataset is suitable for deep learning model for the underwater environments.

A study on the wake characteristics of rim-driven propeller for underwater robot using the PIV (PIV를 이용한 수중로봇용 림 추진기 후류 특성에 관한 연구)

  • LEE, Chang-Je;HEO, Min-Ah;CHO, Gyeong-Rae;KIM, Hyoung-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.68-74
    • /
    • 2022
  • This study analyzed the wake characteristics of the rim-driven propeller (RDP) used in an underwater robot. For underwater robots to perform specific missions, not only propulsion characteristics but also wake characteristics must be considered. In this study, a blade was designed based on NAC 0012 with a symmetrical cross-section. The RDP was hubless with three or four blades. The influence of both the free water surface and the bottom was considered, and the wake was measured using a particle image velocimetry in the advance ratio of 0.2 to 1. Model 1 showed symmetrical wakes in the entire advance ratio section. Model 2 showed asymmetric wakes due to the influence of the free water surface and the bottom at low advance ratio.

A Design of Acoustic-based Underwater Image Transmission System Based on the Multipath Analysis. (Multipath를 고려한 수중영상 전송 시스템 설계)

  • 임용곤;박종원;최영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.202-211
    • /
    • 2001
  • This paper deals with an analysis of multipath which affect a transmission performance in underwater acoustic channel. Underwater acoustic channel with multipath structure is introduced to mathematical modelling for a basin environment. In this paper, SMR(Signal to Multipath Ratio) which is defined as a parameter of multipath's effect is presented as a mathematical equation, and the equation of SMR is simulated by MATLAB program. Furthermore, this paper is also dealt with an implementation of modulation and demodulation system for acoustic transmission. Acoustic Transmission is limited by frequency bandwidth, so $\pi/4 QPSK$(Quadrature Phase Shift Keying) methods which is very useful at frequency ]imitation and FM(Frequency Modulation) are used at acoustic communication system. This implemented hybrid modulation/demodulation system is used as an analog board of image transmission system. In this system, adaptive equalization for reducing the multipath effect and baseline JPEG used for an image compressing are also stated.

  • PDF

Collaborative Control Method of Underwater, Surface and Aerial Robots Based on Sensor Network (센서네트워크 기반의 수중, 수상 및 공중 로봇의 협력제어 기법)

  • Man, Dong-Woo;Ki, Hyeon-Seung;Kim, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.135-141
    • /
    • 2016
  • Recently, the needs for the development and application of marine robots are increasing as marine accidents occur frequently. However, it is very difficult to acquire the information by utilizing marine robots in the marine environment. Therefore, the needs for the researches of sensor networks which are composed of underwater, surface and aerial robots are increasing in order to acquire the information effectively as the information from heterogeneous robots has less limitation in terms of coverage and connectivity. Although various researches of the sensor network which is based on marine robots have been executed, all of the underwater, surface and aerial robots have not yet been considered in the sensor network. To solve this problem, a collaborative control method based on the acoustic information and image by the sonars of the underwater robot, the acoustic information by the sonar of the surface robot and the optical image by the camera of the static-floating aerial robot is proposed. To verify the performance of the proposed method, the collaborative control of a MUR(Micro Underwater Robot) with an OAS(Obstacle Avoidance Sonar) and a SSS(Side Scan Sonar), a MSR(Micro Surface Robot) with an OAS and a BMAR(Balloon-based Micro Aerial Robot) with a camera are executed. The test results show the possibility of real applications and the need for additional studies.

Autonomous swimming technology for an AUV operating in the underwater jacket structure environment

  • Li, Ji-Hong;Park, Daegil;Ki, Geonhui
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.679-687
    • /
    • 2019
  • This paper presents the autonomous swimming technology developed for an Autonomous Underwater Vehicle (AUV) operating in the underwater jacket structure environment. To prevent the position divergence of the inertial navigation system constructed for the primary navigation solution for the vehicle, we've developed kinds of marker-recognition based underwater localization methods using both of optical and acoustic cameras. However, these two methods all require the artificial markers to be located near to the cameras mounted on the vehicle. Therefore, in the case of the vehicle far away from the structure where the markers are usually mounted on, we may need alternative position-aiding solution to guarantee the navigation accuracy. For this purpose, we develop a sonar image processing based underwater localization method using a Forward Looking Sonar (FLS) mounted in front of the vehicle. The primary purpose of this FLS is to detect the obstacles in front of the vehicle. According to the detected obstacle(s), we apply an Occupancy Grid Map (OGM) based path planning algorithm to derive an obstacle collision-free reference path. Experimental studies are carried out in the water tank and also in the Pohang Yeongilman port sea environment to demonstrate the effectiveness of the proposed autonomous swimming technology.

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction (수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구)

  • Dongmin Seo;Sangwoo Oh;Sung-Hoon Byun
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

Investigation for Developing 3D Concrete Printing Apparatus for Underwater Application (수중적층용 3D 콘크리트 프린팅 장비 개발에 대한 연구)

  • Hwang, Jun Pil;Lee, Hojae;Kwon, Hong-Kyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.10-21
    • /
    • 2021
  • Recently, the demand for atypical structures with functions and sculptural beauty is increasing in the construction industry. Existing mold-based structure production methods have many advantages, but building complex atypical structures represents limitations due to the cost and technical characteristics. Production methods using molding are suitable for mass production systems, but production cost, construction period, construction cost, and environmental pollution can occur in small quantity batch production. The recent trend in the construction industry calls for new construction methods of customized small quantity batch production methods that can produce various types of sophisticated structures. In addition to the economic effects of developing related technologies of 3D Concrete Printers (3DCP), it can enhance national image through the image of future technology, the international status of the construction civil engineering industry, self-reliance, and technology export. Until now, 3DCP technology has been carried out in producing and utilizing residential houses, structures, etc., on land or manufacturing on land and installing them underwater. The final purpose of this research project is to produce marine structures by directly printing various marine structures underwater with 3DCP equipment. Compared to current underwater structure construction techniques, constructing structures directly underwater using 3DCP equipment has the following advantages: 1) cost reduction effects: 2) reduction of construct time, 3) ease of manufacturing amorphous underwater structures, 4) disaster prevention effects. The core element technology of the 3DCP equipment is to extrude the transferred composite materials at a constant quantitative speed and control the printing flow of the materials smoothly while printing the output. In this study, the extruding module of the 3DCP equipment operates underwater while developing an extruding module that can control the printing flow of the material while extruding it at a constant quantitative speed and minimizing the external force that can occur during underwater printing. The research on the development of 3DCP equipment for printing concrete structures underwater and the preliminary experiment of printing concrete structures using high viscosity low-flow concrete composite materials is explained.

Performance Evaluation of Underwater Acoustic Communication in Frequency Selective Shallow Water (주파수 선택적인 천해해역에서 수중음향통신 성능해석)

  • Park, Kyu-Chil;Park, Jihyun;Lee, Seung Wook;Jung, Jin Woo;Shin, Jungchae;Yoon, Jong Rak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.95-103
    • /
    • 2013
  • An underwater acoustic (UWA) communication in shallow water is strongly affected by the water surface and the seabed acoustical properties. Every reflected signal to receiver experiences a time-variant scattering in sea surface roughness and a grazing-angle-dependent reflection loss in bottom. Consequently, the performance of UWA communication systems is degraded, and high-speed digital communication is disrupted. If there is a dominant signal path such as a direct path, the received signal is modeled statistically as Rice fading but if not, it is modeled as Rayleigh fading. However, it has been known to be very difficult to reproduce the statistical estimation by real experimental evaluation in the sea. To give an insight for this scattering and grazing-angle-dependent bottom reflection loss effect in UWA communication, authors conduct experiments to quantify these effects. The image is transmitted using binary frequency shift keying (BFSK) modulation. The quality of the received image is shown to be affected by water surface scattering and grazing-angle-dependent bottom reflection loss. The analysis is based on the transmitter to receiver range and the receiver depth dependent image quality and bit error rate (BER). The results show that the received image quality is highly dependent on the transmitter-receiver range and receiver depth which characterizes the channel coherence bandwidth.