• Title/Summary/Keyword: underwater admixture

Search Result 35, Processing Time 0.029 seconds

An Effect on the Properties of Antiwashout Underwater Concrete by mixing time and mixing quantity (배합시간과 배합량이 수중불분리성 콘크리트의 특성에 미치는 영향)

  • 박세인;김동명;김종수;김명식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.345-350
    • /
    • 2000
  • The objective of this study makes investigation into the effect on the properties of underwater antiwashout concrete. which is followed by mixing time and mixing quantity. There is an tendency that (the compressive strength of underwater antiwashout concrete made and cured in fresh water or sea water) is increase when dry mixing time, mixing quantity, total mixing time is increase as unit weight grows. The difference of compressive strength (in case of no dry mixing time and 60 second) is averagely 46.8kgf/㎠ in the fresh water and 35.6kgf/㎠ in sea water. it's considered that dry mixing is dispersed by underwater antiwashout admixture.

  • PDF

An Experimental Study on the Water Tightness of Fly Ash Antiwashout Underwater Concrete (플라이애시 수중불분리성 콘크리트의 수밀성에 관한 실험적 연구)

  • Kwon, Jung-Hyun;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.40-45
    • /
    • 2008
  • This paper describes the effects of fly ash replacement on the water tightness of antiwashout underwater concrete, which replaced the cement with fly ash from 0% to 30%. The experimental work was performed to find out the depth of permeation of concrete specimens cast in air and cured in 23 $^{\circ}C$ tap water using an open center pressure type of water permeation tester. The results showed that the permeation depth values of antiwashout underwater concrete were deeper than normal concrete, but that an admixture using fly ash during antiwashout underwater concrete casting in air made it more watertight than normal concrete according to the water permeation testing. SEM observations of the specimens of fly ash antiwashout underwater concrete showed that it wasmore packed with structures because of the pozzolan reaction of the fly ash and cement.

An Experimental Study of Chloride Acceleration on the Seawater Resistance of Fly Ash Antiwashout Underwater Concrete (플라이애쉬 수중불분리성 콘크리트의 내해수성에 관한 염화물 촉진 시험)

  • Kwon, Jung-Hyun;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.29-34
    • /
    • 2005
  • This paper describes the effect of fly ash replacement on seawater resistance of anti-washout underwater concrete, which was replaced cement by fly ash from $0\%$ to $50\%$. The experimental work was performed to find out the variations of length and weight of specimens, using a chloride acceleration test in $40\^{\circ}$C The results shaw that the admixture using fly ash on an anti-washcout underwater concrete in the sea environment makes it more durable for the attacks of chloride by seawater. Also, the length of specimens of anti-washout underwater concrete, at age 180 days, increased substantially, compared with normal concrete; however, the mixture in which cement was replaced $50\%$ of fly ash shows $93\%$ reduction of the expansion, compared with the normal anti "washout underwater concrete specimen.

Fundamental Study on the Characteristics of Antiwashout Underwater Concrete (수중 비분리 콘크리트의 특성에 대한 기초적 연구)

  • 김명식
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.6
    • /
    • pp.74-82
    • /
    • 1996
  • In this study, the characteristics of antiwashout underwater concrete according to the using types of admixture were experimentally investigated. Especially, the comparison on the performance of seven types(CO-A, B, C, D, E, F, G) of the manufactured admixtures was carried out in the same mixing condition and proportions. Based on the results of experiments, the conclusions were summarized as follows : (1) The slump flow on most of specimens except by CO-F type were progressed very well. (2) In most of products, the measured values of suspensions, pH's and air contents were lower than their reference values. However, CO-B, CO-F and CO-G types exceeded the reference ones in suspension and pH. (3) The time lags between initial and final setting were about three hours in most of tests, however, the maximum difference of total setting time was ten hours in comparing with the admixture types. The unit weights were mostly lower than $2300kg/m^3$ and the compressive strengths cured by salt water were about 80% of the ones by fresh water. (4) Finally, in spite of some problems, most of the manufactured admixtures may be performed well their functions in antiwashout under-water concrete if the using quantities are properly controlled by the site experiments.

  • PDF

A Study on the Fluidity of Antiwashout Underwater Concrete Containing Fly Ash (Fly Ash를 사용한 수중불분리 콘크리트의 유동성에 관한 연구)

  • 권중현;배기성
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.153-161
    • /
    • 1998
  • This paper is to investigate the Fluidity of Antiwashout Underwater Concrete containing Fly Ash. The results of study are concluded as follows: the increase in Slump Flow value did not happen in the plain concrete which was replaced cement by Fly Ash; however, the maximum value could reach in the replacement of 30% of Fly Ash by weight of cement in the Fly Ash replaced concrete. On the condition of Fly Ash-Antiwashout Underwater Concrete in expecting 50 cm of the Slump Flow, it was necessary that the usage amount of Superplasticizer be around 1% of unit Binder, and 1.5% in 60 cm of the Slump Flow, respoectively.

  • PDF

Water temperature effects on the early strength characteristics of antiwashout underwater concrete (수중온도가 수중불분리성 콘크리트의 초기상도에 미치는 영향에 관한 실험적 연구)

  • 이승훈;정재홍;안태송;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.324-329
    • /
    • 1998
  • Recently the use of the underwater concrete with the antiwashout admixture is increased considerably. When we intend to apply it to the field, we must consider the water temperature effect. In this study, we investigate the properties of setting time, early strength, hydration temperature history and core strength with the antiwashout underwater concrete in the water temperature 8$^{\circ}C$, 14$^{\circ}C$ and 22$^{\circ}C$ respectively. As a result of experiment, as the water temperature is decreasing, setting time is delayed twice of three times and early strength is lower from 10% to 50%. Therefore to compensate the decrease of the early strength, we used the accelerator and investigated the concrete properties.

  • PDF

An Experimental Study on the Sulfate Resistance of Fly Ash Antiwashout Underwater Concrete (플라이애시를 혼입한 수중불분리성 콘크리트의 내 황산염에 관한 실험적 연구)

  • Kwon, Joong-Hyen;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.40-46
    • /
    • 2011
  • This paper describes the effects of fly ash replacement on the sulfate resistance of antiwashout underwater concrete which was replaced cement by fly ash from 0% to 50%. and the experimental works were performed on sulfate acceleration test of 5%$Na_2SO_4$ solution to find out the variance of length and weight of specimens. The experimental result shows that the length of specimens of antiwashout underwater concrete age at 180day was highly increased compare with normal concrete by acceleration test. but the mixture which was replaced 50% of fly ash shows reduction of the expansion, weight various, compare with normal concrete specimen. accordingly by using fly ash as admixture in antiwashout underwater concrete in sea environment, it will makes more durable for the attacks of sulfate by sea water.

A Study for Improving Properties of Antiwashout Underwater Concrete Mixed with Mineral Admixtures (광물질 혼화재를 혼합한 수중불분리성 콘크리트의 물성 향상을 위한 연구)

  • 문한영;신국재;이창수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.409-419
    • /
    • 2002
  • Nowadays, antiwashout underwater concrete is widely used for constructing underwater concrete structures but they, especially placed in marine environment, can be easily attacked by chemical ions such as SO$\^$2-/$\_$4/ Cl$\^$-/ and Mg$\^$2+/, so the quality and capability of concrete structures go down. In this paper, to solve and improve those matters, flyash and GGBFS(ground granulated blast furnace slag) were used as partial replacements for ordinary portland cement. As results of experiments for fundamental properties of antiwashout underwater concrete containing 10, 20, 30% of flyash and 40, 50, 60 % of GGBFS respectively, setting time, air contents, suspended solids and pH value were satisfied with the "Standard Specification of Antiwashout Admixtures for Concrete" prescribed by KSCE, and also slump flow, efflux time and elevation of head were more improved than that of control concrete. From the compressive strength test, it was revealed that the antiwashout underwater concrete containing mineral admixtures(flyash and GGBFS) is more effective for long term compressive strength than control concrete. An attempt to know how durable when they are under chemical attack has also been done by immersing in chemical solutions that were x2 artificial seawater, 5 % sulphuric acid solution, 10%, sodium sulfate solution and 10% calcium chloride solution. After immersion test for 91days, XRD analysis was carried out to investigate the reactants between cement hydrates and chemical ions and some crystalline such as gypsum ettringite and Fridel′s salt were confirmed.

Mechanical and Physical of Antiwashout Underwater Concrete under Different Curing Temperature (양생온도에 따른 수중불분리성 콘크리트의 물리.역학적 특성)

  • 이병덕;원종필;안태송
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.301-307
    • /
    • 1997
  • This paper is evaluated for properties of aggregate and antiwashout admixture not only to minimize segregation and water contamination of underwater concrete but also to meet concrete quality required. Two antiwashout admixtures used in this study were available domestically and slump flow, pH, setting time, and filing property of fresh concrete and the compressive strength, flexural strength under water and in the air under 2 different curing conditions ($10^{\cire}C$ and $20^{\cire}C$ ) were measured. Compressive strength ratio of specimens cured in and water temperature $10^{\cire}C$ /$20^{\cire}C$ added HPEC and HPMC was 64% and 89%, respectively. Relative compressive strength of 2 kinds observed higher concrete added HPEC, 3% at $10^{\cire}C$ curing temperature, 34% at $20^{\cire}C$ . The flexural strength of specimens made under water was 1/4~1/6 of compressive strength similar to the existing data in the literature.

  • PDF

Freezing and Thawing Resistance and fundamental Properties of Antiwashout Underwater Concrete Containing Mineral Admixtures (광물질혼화재 혼합 수중불분리성 콘크리트의 물성 및 동결융해 저항성)

  • Moon HanYoung;Shin Kook-Jae;Song Yong-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.455-464
    • /
    • 2005
  • Today the application of antiwashout underwater concrete to the construction sites is increasing steadily, while its reliability is in issue. Particularly, antiwashout underwater concrete is known to have very weak durability on frost attack, and hence Japan society of civil engineers(JSCE) regulated that not to use of antiwashout underwater concrete where the freezing and thawing is suspected. This study aims the improvement of the freezing and thawing resistance for antiwashout underwater concrete. From the results of fundamental test, FA20 and SG50 showed good performance in fluidity and long term compressive strength than control concrete. Meanwhile, MK10 marked the highest compressive strength through the whole curing age but a defect on fluidity was discovered. The results from the repeated freezing and thawing test show that the large volumes of air entrapped by cellulose based antiwashout underwater admixture gave bad effects to frost durability and hence not much benefits were confirmed from the use of mineral admixtures. However there were some increasing effects on frost durability of MK10 and SG50 by securing $6{\pm}0.5\%$ of entraining air. In the meantime, there was a increasing tendency of frost durability by increasing blame's fineness of ground granulated blast furnace slag.