• Title/Summary/Keyword: understory

Search Result 212, Processing Time 0.032 seconds

Effects of vegetation structure and human impact on understory honey plant richness: implications for pollinator visitation

  • Cho, Yoori;Lee, Dowon;Bae, SoYeon
    • Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Background: Though the biomass of floral vegetation in understory plant communities in a forested ecosystem only accounts for less than 1% of the total biomass of a forest, they contain most of the floral resources of a forest. The diversity of understory honey plants determines visitation rate of pollinators such as honey bee (Apis mellifera) as they provide rich food resources. Since the flower visitation and foraging activity of pollinators lead to the provision of pollination service, it also means the enhancement of plant-pollinator relationship. Therefore, an appropriate management scheme for understory vegetation is essential in order to conserve pollinator population that is decreasing due to habitat destruction and disease infection. This research examined the diversity of understory honey plant and studied how it is related to environmental variables such as (1) canopy density, (2) horizontal heterogeneity of canopy surface height, (3) slope gradient, and (4) distance from roads. Vegetation survey data of 39 plots of mixed forests in Chuncheon, Korea, were used, and possible management practices for understory vegetation were suggested. Results: This study found that 113 species among 141 species of honey plant of the forests were classified as understory vegetation. Also, the understory honey plant diversity is significantly positively correlated with distance from the nearest road and horizontal heterogeneity of canopy surface height and negatively correlated with canopy density. Conclusions: The diversity of understory honey plant vegetation is correlated to vegetation structure and human impact. In order to enhance the diversity of understory honey plant, management of density and height of canopy is necessary. This study suggests that improved diversity of canopy cover through thinning of overstory vegetation can increase the diversity of understory honey plant species.

Initial Responses of Quercus serrata Seedlings and Forest Understory to Experimental Gap Treatments

  • Cho, Yong-Chan;Kim, Jun-Soo;Lee, Chang-Seok;Cho, Hyun-Je;Bae, Kwan-Ho
    • Journal of Ecology and Environment
    • /
    • v.32 no.2
    • /
    • pp.87-96
    • /
    • 2009
  • Pinus thunbergii plantations in Pohang-si, Gyeongsangbuk-do, Korea, are of low ecological quality, with arrested succession and a high proportion of ruderal species. To improve the quality of the habitat, we created canopy gaps ($\sim42\;m^2$) and monitored changes in abiotic (light availability, canopy openness) and biotic (survival and growth of seedlings and understory communities) variables in 2007 and 2008 in plots that had received one of five types of treatment: cutting of canopy trees and removal of the understory (CU), cutting of canopy trees only (C), girdling of canopy trees and removal of the understory (GU), girdling of canopy trees (G) or control. Each treatment was applied to three replicate plots. Abiotic variables did not significantly differ among treatments. Survival rates of target species were slightly lower in the CU, G and control conditions. Based on logistic regression analysis, the only significant growth factor affecting survival was height growth. Positive effects of seedling height and leaf area growth on survival were also detected, but did not reach statistical significance. In treatment G, gradual improvement of overstory conditions and mitigation of competition by limitation of disturbance to the understory community were likely to have promoted seedling growth. There were no significant effects of gap treatments on changes in species abundance (cover and richness) and composition of understory between the study years. This result implies that the small gaps created in our study may be below the threshold size to affect understory growth. However, the results of this study are based on a short-term investigation of only two years. Long-term research is strongly recommended to clarify the effects of gap treatment on plant communities in afforested areas.

A Comparison of Nitrogen Cycling among Young Pinus koraiensis Plantations of Different Ages (잣나무 유림의 수령에 따른 질소순환의 비교)

  • Cho, Kang-Hyun;Kim, Joon-Ho
    • The Korean Journal of Ecology
    • /
    • v.12 no.4
    • /
    • pp.245-256
    • /
    • 1989
  • Nitrogen cycling was in vestigated in Piuns koraiensis plantations with different ages, 1, 2, 3, 6, 9 and 11 years, which were reforested after clear-cutting. Annual N input by bulk precipitation was 10kg., and output by runoff decreased as the plantation aged, especially in-N. The standing N content of the whole vegetation increased approximately 5 times through 11 years. Understory surpassed P. koraiensis plants in the distribution of standing N content for the initial 9 years, but reversed thereafter. Annual N uptake of P. koraiensis plants increased greatly through 11 years, but that of understory increased somewhat until 9 years and decreased thereafter. The maximum N uptake of the whole vegetation was made in the 9-yr-old plantation. In the 1-yr-old one, 59% of the maximum was already absorbed by understory which mainly consisted to herbs. The recycling coefficient, ratio of annual return to rptake, of the whole vegetation decreased as the plantation aged and the value of understory was greater than that of P koraiensis plants. On the contrary, the N use efficiency, ratio of the net primary production to N uptake, of the whole vegetation increased as the plantation aged and the value of understory was less than that of P. koraiensis plants. Consequently, it is emphasized that understory played an important role in such plantation reforesred after clear-cutting for the initial 9 years.

  • PDF

The Effects of Silvopastoral Practice on Changes of Understory Vegetation in a Japanese Larch (Larix kaempferi) Plantation

  • Kang, Sung Kee;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.151-159
    • /
    • 2007
  • This study was conducted to investigate the effects of thinning on changes in stand characteristics and understory vegetation in a silvopasture practiced Japanese larch plantation in the Research Forest of Kangwon National University, Korea. Three different thinning intensities (64%, 35%, and control) were applied. Before and after thinning, the understory plant species increased its number from 48 (7 tree species, 7 shrubs species, 28 herbaceous species, and 6 woody climbers) to 100 (11 tree species, 15 shrub species, 67 herbaceous species, and 7 woody climbers). Thinning made plants invade easily on the forest floor, and plot A (325 stems/ha) had much higher number of undersory species than those Of plot B (575 stems/ha) and control plot (1,150 stems/ha). In three years after thinning, understory aboveground biomass (kg/ha) of herbs were 523 for control, 1,230 for plot B, and 1,288 for plot A. The canopy coverage had remarkable influence on the understory biomass production, resulting in relatively small amount of herbage production on control plot. The differences were statistically significant between thinned plots and unthinned plot, but there were no significant differences among the thinned plots (p<0.05).

Significance of Aspect and Understory Type to Leaf Litter Redistribution in a Temperate Hardwood Forest

  • Lee, Do-Won;Yoo, Ga-Young;Oh, Sung-Jin;Shim, Jee H.;Kang, Sin-Kyu
    • Animal cells and systems
    • /
    • v.3 no.2
    • /
    • pp.143-147
    • /
    • 1999
  • Annual production and redistribution of leaf litter were compared among three distinct understory patches in a temperate hardwood forest dominated by Quercus mongolica, Kalopanax pictus, Acer pseudo-sieboldianum, and Carpinus cordata. Two patches were located on a southwest-facing slope: one with an understory dominated by herbaceous plants (Patch S), and the other covered with evergreen dwarf bamboo, Sasa borealis (patch SS). The third patch was on the opposite slope with an understory dominated by herbaceous plants (Patch N). Annual leaf litterfall was averaged 330 g m$^{-2} yr$^{-2}$ in the three patches from 1994 to 1998. From mid-September 1996 to mid-September 1997, net transport of leaf litter over patch bound-aries was 1,824g m$^{-1}$ from Patch S to SS, 1,465g m$^{-1}$ from Patch S to N, and 886 g m$^{-1}$ from Patch SS to N. The amounts moving downslope out of Patch S, SS, and N were 2,548, 471, and 588g m$^{-1}$, respectively. When a mass balance approach was employed for the data of leaf litter transport, the results were relatively consistent with 216, 631, and 724g m$^{-2}$ of leaf litter stores in Patch S, SS, and N, respectively, in April 1997. This study suggests that leaf litter redistribution is largely regulated by aspect and understory type and exerts a significant effect on carbon processes in the forest ecosystem.

  • PDF

Relationships between Forest Understory Habitat and Small Rodents in Mt. Chirisan National Park (지리산(智異山) 지역(地域)에서 산림(山林) 하층(下層)의 서식환경(棲息環境)과 소형(小型) 설치류(齧齒類)와의 관계(關係))

  • Rhim, Shin-Jae;Lee, Woo-Shin
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.3
    • /
    • pp.236-241
    • /
    • 2001
  • This study was conducted to clarify the relationship between forest understory habitat and small rodents in the study sites of 500m, 800m and 1,100m a. s. l. of 6 areas in Mt. Chirisan National Park from July 1997 to August 1998. Coverage of understory vegetation and depth of litter layer were increased as the increase of altitude. Seventy seven individuals of Apodemus agrarius, A. peninsulae and Eothenomys regulus were captured in all study areas. There were significantly correlations among coverage of understory vegetation, depth of litter layer and number of captured small rodents. Increase of understory vegetation coverage and litter layer would provide the proper habitat condition for small rodents.

  • PDF

Initial Development of Forest Structure and Understory Vegetation after Clear-cut in Pinus densiflora Forest in Southern Gangwon-do Province (강원도 남부 지역에서 소나무림 개벌 후 초기 임분 구조 및 하층식생 발달)

  • Bae, Kwan Ho;Kim, Jun Soo;Lee, Change Seok;Cho, Hyun Je;Lee, Ho Young;Cho, Yong Chan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • Open- to closed canopy stage and it's ecological characteristics in vegetation succession are commonly described, but poorly understood in Korea. Vegetation development on structure, environment and understory abundance were studied for 16 yr in post-clearcut Pinus densiflora forests in the southern Gangwon-do province by applying space-for-time approach. We sampled 210 plots (10 for structure and 200 for understory) for four seral stages (1yr, 3yr, 10yr and 16yr). After clear-cut, mean stem density increased gradually to $5,714{\pm}645$ stems/ha after 16 years and mean basal area was also from $5.5{\pm}0.7m^2/ha$ after 10 years and doubled at $10.0{\pm}1.6m^2/ha$ in 16 years. Woody debris and bared soil on the forest floor peaked at 11--- after 10 years and at 10.3--- after 3 years, respectively. In understory mean cover declined with all growth form groups following succession, but in richness, forb specie increased with structural development during 16 years. Our study suggested that overstory development did not suppressed whole understory properties especially in richness, thus appeared to act as a filter selectively constraining the understory characteristics. However only long-term studies are essential for elucidating patterns and processes that cannot be inferred form short-term or space-for-time researches. Strong negative relationship between overstory and understory characteristics in conventional models surely reexamined.

Understory Evapotranspiration Measured by Eddy-Covariance in Gwangneung Deciduous and Coniferous Forests (광릉 활엽수림과 침엽수림에서 에디공분산으로 관측한 하부 군락의 증발산)

  • Kang, Min-Seok;Kwon, Hyo-Jung;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.233-246
    • /
    • 2009
  • The partitioning of evapotranspiration (ET) into evaporation (E) and transpiration (T) is critical in understanding the water cycle and the couplings between the cycles of energy, water, and carbon. In forests, the total ET measured above the canopy consists of T from both overstory and understory vegetation, and E from soil and the intercepted precipitation. To quantify their relative contributions, we have measured ET from the floors of deciduous and coniferous forests in Gwangneung using eddy covariance technique from 1 June 2008 to 31 May 2009. Due to smaller eddies that contribute to turbulent transfer near the ground, we performed a spectrum analysis and found that the errors associated with sensor separation were <10%. The annual sum of the understory ET was 59 mm (16% of total ET) in the deciduous forest and 43 mm (~7%) in the coniferous forest. Overall, the understory ET was not negligible except during the summer season when the plant area index was near its maximum. In both forest canopies, the decoupling factor ($\Omega$) was about ~0.15, indicating that the understory ET was controlled mainly by vapor pressure deficit and soil moisture content. The differences in the understory ET between the two forest canopies were due to different environmental conditions within the canopies, particularly the contrasting air humidity and soil water content. The non-negligible understory ET in the Gwangneung forests suggests that the dual source or multi-level models are required for the interpretation and modeling of surface exchange of mass and energy in these forests.

Backpack- and UAV-based Laser Scanning Application for Estimating Overstory and Understory Biomass of Forest Stands (임분 상하층의 바이오매스 조사를 위한 백팩형 라이다와 드론 라이다의 적용성 평가)

  • Heejae Lee;Seunguk Kim;Hyeyeong Choe
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.363-373
    • /
    • 2023
  • Forest biomass surveys are regularly conducted to assess and manage forests as carbon sinks. LiDAR (Light Detection and Ranging), a remote sensing technology, has attracted considerable attention, as it allows for objective acquisition of forest structure information with minimal labor. In this study, we propose a method for estimating overstory and understory biomass in forest stands using backpack laser scanning (BPLS) and unmanned aerial vehicle laser scanning (UAV-LS), and assessed its accuracy. For overstory biomass, we analyzed the accuracy of BPLS and UAV-LS in estimating diameter at breast height (DBH) and tree height. For understory biomass, we developed a multiple regression model for estimating understory biomass using the best combination of vertical structure metrics extracted from the BPLS data. The results indicated that BPLS provided accurate estimations of DBH (R2 =0.92), but underestimated tree height (R2 =0.63, bias=-5.56 m), whereas UAV-LS showed strong performance in estimating tree height (R2 =0.91). For understory biomass, metrics representing the mean height of the points and the point density of the fourth layer were selected to develop the model. The cross-validation result of the understory biomass estimation model showed a coefficient of determination of 0.68. The study findings suggest that the proposed overstory and understory biomass survey methods using BPLS and UAV-LS can effectively replace traditional biomass survey methods.

Fertilization Effects on Understory Vegetation Biomass and Structure in Four Different Plantations

  • Son, Yowhan;Lee, Mi-Hyang;Noh, Nam Jin;Kang, Byeung Hoa;Kim, Kun Ok;Yi, Myong Jong;Byun, Jae Kyung;Yi, Koong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.520-527
    • /
    • 2007
  • Biomass and species diversity of understory vegetation after fertilization were studied for 28-year-old Quercus acutissima plantation (MQA), 29-year-old Pinus densiflora plantation (MPD), 8-year-old Betula platyphylla var. japonica plantation after coal reclamation (YBP), and 4-year-old Pinus densiflora plantation after forest fire (YPD) in central Korea. Nitrogen + phosphorus + potassium (6:4:1) fertilizer was applied for 3 years from 2004. Thereafter photosynthetically active radiation (PAR) and understory species richness and diversity were measured in late July-early August 2006. PAR (${\mu}mol\;m^{-2}S^{-1}$) was higher at the fertilization treatment (100.9) than at the control (67.0) for MQA while was lower at the fertilization treatment (156.5) than at the control (268.7) for MPD. Total understory biomass (t $ha^{-1}$) was lower at the fertilization plot (1.8) than at the control plot (3.0) for YPD, however, there were no differences in biomass between fertilization and control plots for MQA, MPD and YBP. Total species number of understory vegetation was higher for fertilization than for control at MPD (47 vs. 45) and YPD (21 vs. 13), and was higher for mature plantations (33 vs. 37 for MQA and 47 vs. 45 for MPD) than for young plantations (16 vs. 16 for YBP and 21 vs. 13 for YPD). Species richness and diversity were higher at the fertilization treatment than at the control for MQA, YBP, and YPD while were lower at the fertilization treatment than at the control for MPD, however, the differences were not statistically significant. Our results indicate that there were no consistent patterns in light conditions, biomass and species richness and diversity of understory vegetation following fertilization. More detailed long-term studies with different fertilizer applications would be necessary to conclude the influence of fertilization on understory vegetation in the region.