• 제목/요약/키워드: underground temperature

검색결과 612건 처리시간 0.034초

지하공기열 히트펌프 제습기에 관한 실험적 연구 (An Experimental Study on a Heat Pump with Dehumidification Function that Utilizes Underground Air Heat)

  • 고지운;박윤철;고광수
    • 설비공학논문집
    • /
    • 제26권2호
    • /
    • pp.55-60
    • /
    • 2014
  • The present study has been conducted to develope a heating system for a green house with heat from underground air at Jeju Island. The temperature of the air deposited in the underground is $16{\sim}18^{\circ}C$ throughout the year, and it also has a large amount of moisture. Therefore, the air could not directly used for the heating of a green house. In this study, a heat pump with dehumidification function has been developed, which consisted of three evaporators, where the moisture removal occurs, accompanied by temperature drop. The dropped temperature is recovered, while passing through a series condenser. The air temperature increased from $17^{\circ}C$ to 35 with a 2.1 kg/h of moisture removal rate. The developed system moisture removal performance shows 0.91 kg/kWh.

Characteristics of the Underground Atmosphere

  • Haast, J.
    • 동굴
    • /
    • 제8호
    • /
    • pp.55-64
    • /
    • 1998
  • Many of the familiar roadside signs advertising caves open to the public carry the phrase, “Come underground and cool off”. This is reasonable advice, for during the heat of summer the temperature of these caves is indeed pleasantly cool. If the principal tourist season were in the winter instead of the summer, however, the signs would probably read, “Come underground and warm up”, for in winter these same caves are far warmer than the surface. Cave temperatures are nearly constant throughout the year.

  • PDF

지열교환기의 배관자재에 따른 난방효율 분석 (Heating Efficiency of the Underground Heat Exchanger by Different Pipe Materials)

  • 오인환;이준학;정우철
    • 한국축산시설환경학회지
    • /
    • 제4권2호
    • /
    • pp.127-136
    • /
    • 1998
  • To use the earth heat for the livestock housing, an underground heat exchanger is developed and pipes are layed in the depth of 2.5m under the ground. The pipes have two different kinds of diameter (200mm, 100mm) and materials (PE, PVC). The results of heating effect in winter and spring are following. The temperature in different soil depth varies from 5$^{\circ}C$ by 1.5m depth, to 9$^{\circ}C$ by 3.5m. So it should be better to have the depth greater than 2.5m. The difference of air temperature between the inside and outside pipe was 9.9 Kelvin(K) with 200mm diameter and 13.4K with the 100mm diameter with the same material in winter. By the lower outside temperature from -7.2$^{\circ}C$, it could keep the air temperature above 6$^{\circ}C$ through the 100mm diameter pipe. The heating performance was 593 W with 200mm diameter, 118W with 100mm diameter (PE), and 115W with 100m diameter (PVC), respectively. As the outside temperature varies from -1.5$^{\circ}C$ to 18.6$^{\circ}C$ in early spring, the air temperature through the pipes show 4∼8$^{\circ}C$. While the difference between maximum and minimum outside temperature is 14K, the one through the pipes could be reduced by 2K. Pipes with small diameter can more reduce the difference than the pipe with larger diameter.

  • PDF

A 1D model considering the combined effect of strain-rate and temperature for soft soil

  • Zhu, Qi-Yin;Jin, Yin-Fu;Shang, Xiang-Yu;Chen, Tuo
    • Geomechanics and Engineering
    • /
    • 제18권2호
    • /
    • pp.133-140
    • /
    • 2019
  • Strain-rate and temperature have significant effects on the one-dimensional (1D) compression behavior of soils. This paper focuses on the bonding degradation effect of soil structure on the time and temperature dependent behavior of soft structured clay. The strain-rate and temperature dependency of preconsolidation pressure are investigated in double logarithm plane and a thermal viscoplastic model considering the combined effect of strain-rate and temperature is developed to describe the mechanical behavior of unstructured clay. By incorporating the bonding degradation, the model is extended that can be suitable for structured clay. The extended model is used to simulate CRS (Constant Rate of Strain) tests conducted on structural Berthierville clay with different strain-rates and temperatures. The comparisons between predicted and experimental results show that the extended model can reasonably describe the effect of bonding degradation on the stain-rate and temperature dependent behavior of soft structural clay under 1D condition. Although the model is proposed for 1D analysis, it can be a good base for developing a more general 3D model.

지하상가 실내외 및 지하철의 온도와 습도에 따른 Formaldehyde 거동(II) (Behavior of Formaldehyde Concentration by Temperature and Humidity of Indoor and Outdoor in Underground Shopping Center and Subway(II))

  • 권우택
    • 환경위생공학
    • /
    • 제9권1호
    • /
    • pp.67-75
    • /
    • 1994
  • Formaldehyde has been in widespread industrial use since World War II . Numerous sources of formaldehyde are present in the indoor environment. Additionally, the current trend toward tighter, more energy efficient buildings with lower ventilation rates has led to increase concentrations of this and other pollutants generated indoors. In this paper, the field survey was carried out once a month from January to MarctL 1994 to measure indoor and outdoor formaldehyde concentration in several underground locations in Seoul. The results could be summarized as follows : 1. At Yang- jae underground shopping center, the mean formaldehyde concentration was 77.8ppb for indoor and 68.4ppb for outdoor. At Ban- po underground shopping center, it was 175.8ppb for indoor and 127.3ppb for outdoor. At Jam- shil underground shop ping center, it was 135.2ppd for indoor and 34.6ppb for outdoor. Indoor the No.2 sub way line, it was 105.6ppb. The formaldehyde concentration using Berge equation was as follows : At Yang- jae underground shopping center, the mean formaldehyde concentration was 85.99ppb for indoor and 72.75ppb for outdoor At Ban- po underground shopping center, it was 254. 17ppb for indoor and 138.14ppb for outdoor. At Jam- shil underground shopping center, it was 249.13ppb for indoor and 36.87ppb for outdoor. Indoor the No.2 subway line, it was 131.73ppb. 3, The result of correlation analysis indicated that the relationship between temperature and formaldehyde concentration is very high( $\gamma $= 0.831 ∼ 0.974). 4. Also, the relationship between humidity and formaldehyde concentration is variant ($\gamma $ = 0.246 ∼0.999). 5. The mean formaldehyde concentration indoor and outdoor Ban- po underground shop ping center and indoor Jam- shil underground shopping center and indoor the No.2 sub way line exceed the American Society of Heating, Refrigeration, Air- conditioning Engineers( ASHRAE) stflndard of 100ppb(120 $\mu $g/m$^{3}$).

  • PDF

지하공기를 이용하는 농업시설용 난방시스템 (Performance of Heat Pump System Using Underground Air as Heat Source)

  • 강연구;유영선;김영화;성문석;김종구;장재경;이형모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.587-589
    • /
    • 2009
  • The districts of underground geologic structure in Jeju island where underground air is distributed are lava cave, pyroclastic, open joint, and crushing zone. Such districts are identified to secure an enough airflow when air ventilation layer is to secure 25-35m in depth. In Jeju, Ground air is used for heating greenhouse and fertilizing natural $CO_2$ gas by suppling directly into greenhouse. But the heating method by suppling ground air into greenhouse directly bring about several problem. The occurrence of disease of the crops by high humidity is worried because the underground air which becomes discharge from underground air layer has over 90% relative humidity. The underground air is inadequate in heating for crops which need high temperature heating such as mangos, Hallbong and mandarin orange because the temperature of it is $15{\sim}18^{\circ}C$. Also There is worry where the ventilation loss becomes larger because the air pressure inside greenhouse is high by supplying underground air directly. In this study the heat pump system using underground air as heat source was developed and heating performance of the system was analysed. Heating COP of the system was 2.5~5.0 and rejecting heat into greenhouse and extracting heat from underground air were 40,000~27,000 kcal/h, 30,000~18,000 kcal/h respectively.

  • PDF

화재 발생시 환기방식에 따른 지하공동구내 열유동 특성 연구 (Characteristics of Fire-induced Thermal-Flowfields in an Underground Utility Tunnel with Ventilation)

  • 김홍식;황인주;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1845-1850
    • /
    • 2003
  • The underground utility tunnels are important facility as a mainstay of country because of communication developments. The communication and electrical duct banks as well as various utility lines for urban life are installed in the underground utility tunnel systems. If a fire breaks out in this life-line tunnel, the function of the city will be discontinued and the huge damages are occurred. In order to improve the safety of life-line tunnel systems and the fire detection, the behaviors of the fire-induced smoke flow and temperature distribution are investigated. In this study we assumed that the fire is occurred at the contact or connection points of cable. Numerical calculations are carried out using different velocity of ventilation in utility tunnel. The fire source is modeled as a volumetric heat source. Three-dimensional flow and thermal characteristics in the underground tunnel are solved by means of FVM (Finite Volume Method) using SIMPLE algorithm and standard ${\kappa}-{\varepsilon}$ model for Reynolds stress terms. The numerical results of the fire-induced flow characteristics in an underground utility tunnel with different velocity of ventilation are graphically prepared and discussed.

  • PDF

지중송전케이블 종단접속함 종류에 따른 외기 및 운전온도에 의한 열특성 분석 (Thermal Characteristics Analysis by Ambient and Operating Temperature according to the Kinds of Terminations in Underground Power Cable Systems)

  • 정채균;강지원;이방욱
    • 전기학회논문지
    • /
    • 제64권8호
    • /
    • pp.1154-1160
    • /
    • 2015
  • This paper describes the thermal characteristics of underground power cable system terminations according to the change of ambient temperature as well as operating temperature. Recently, the failure has been gradually increasing in outdoor termination during winter season because the power demand was increased by electricity heating system. The power demand and outdoor temperature is difference between day time and night time. The temperature difference has an influence on conductor extension and shrinkage due to conductor force as well as thermal mechanical characteristics. These phenomena have daily repeated during heating and cooling period of conductors. In these cases, the insulation of outdoor terminations might be degraded by the reduced interface pressure surrounding stress relief cone. Therefore, in this paper, the thermal characteristics are variously analysed by simulation considering power demand and ambient temperature condition during winter season at epoxy type termination as well as slip-on type termination

지하공간 화재시 배연장비의 활용에 관한 연구 (A Study on the Application of Ventilation Equipment in an Underground Fire)

  • 이성룡;한동훈
    • 터널과지하공간
    • /
    • 제20권2호
    • /
    • pp.92-96
    • /
    • 2010
  • 본 연구에서는 지하공간에서 화재 발생시 배연장비의 연기배출 성능을 평가하기 위하여 실험을 실시하였다. 배연장비로는 이동식 송풍기를 사용하였으며 가연물질로는 에탄올을 사용하였다. 한 변의 길이가 80cm의 정사각형 화원을 사용하였으며 최대 열방출률은 약 460 kW이다. 급기방식 배연의 영향을 평가하였다. 급기방식의 경우 실내의 가시도 향상 및 온도감소 효과를 확인할 수 있었다.

Underground temperature survey for the study of shallow groundwater flow system

  • Okuyama Takehiko;Kuroda Seiichiro;Nakazato Hiroomi;Natsuka Isamu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.690-694
    • /
    • 2003
  • Groundwater preferentially flows through sediment layers with high permeability such as colluvium. Its flow paths are called groundwater vein streams. An underground temperature survey is a method to locate vein streams by underground temperature anomalies associated with flowing groundwater. A groundwater flow system near an irrigation reservoir located in the upper part of a landslide block was surveyed with this method. After a geomembrane lining was installed in the reservoir, the total cross-sectional area of the vein streams in the aquifer decreased to as little as 0.35 times that before installation of the liner. A change in groundwater quality also indicated that the mixing of groundwater with leaked water from the reservoir stopped after installation of the lining.

  • PDF