• Title/Summary/Keyword: underground storage

Search Result 403, Processing Time 0.027 seconds

A Study on Acoustic Emission and Micro Deformation Characteristics During Biaxial Compression Experiments of Underground Opening Damage (이축압축실험을 통한 지하공동 손상시 음향방출 및 미소변형 특성 연구)

  • Min-Jun Kim;Junhyung Choi;Taeyoo Na;Chan Park;Byung-Gon Chae;Eui-Seob Park
    • Tunnel and Underground Space
    • /
    • v.34 no.2
    • /
    • pp.169-184
    • /
    • 2024
  • This study investigates acoustic emission (AE) and micro-deformation characteristics of circular openings through biaxial compression experiments. The experimental results showed a significant increase in the frequency, count, energy, and amplitude of AE signals immediately before damage occurred in the circular opening. The differences in frequency and count between before and after damage initiation were significantly pronounced, indicating suitable factors for identifying damage occurrence in circular openings. The results for digital image correlation (DIC) technique revealed that micro-deformation was concentrated around the openings, as evidenced by the spatial distribution of strain. In addition, spalling was observed at the end of the experiments. The AE and micro-deformation characteristics presented in this study are expected to serve as fundamental data for evaluating the stability of underground openings and boreholes for deep subsurface projects.

Status and Issues for Underground Space Development in Singapore (싱가포르 지하공간 개발의 현황 및 이슈)

  • Lee, Hee Suk;Zho, Yingxin
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.304-324
    • /
    • 2018
  • Singapore government is strongly promoting the development and utilization of underground space in national level due to the nature of the city state which lacks the land. As well as conventional underground utilization in shallow depth such as metro and underground roads, large rock cavern utilization has been started after the successful completion of the underground ammunition depot in the rock, and Jurong Rock Cavern, the second large underground cavern project has just been completed. In this paper, after evaluating the conditions of the underground development in rock mass through the analysis of the geology of Singapore, the history and current status of underground development are examined. Several creative development plans from Singapore government such as underground reservoirs, underground automation logistics systems and underground warehouses storage etc. are introduced with technical issues. This paper also discusses the problems and issues related to the development of large underground space in rock mass in Singapore. It is expected that such active development of underground space in Singapore can give many opportunities and also challenges for rock engineering and industry in the future.

A study on simulation modeling of the underground space environment-focused on storage space for radioactive wastes (지하공간 환경예측 시뮬레이션 개발 연구-핵 폐기물 저장공간 중심으로)

  • 이창우
    • Tunnel and Underground Space
    • /
    • v.9 no.4
    • /
    • pp.306-314
    • /
    • 1999
  • In underground spaces including nuclear waste repository, prediction of air quantity, temperature/humidity and pollutant concentration is utmost important for space construction and management during the normal state as well as for determining the measures in emergency cases such as underground fires. This study aims at developing a model for underground space environment which has capabilities to take into account the effects of autocompression for the natural ventilation head calculation, to find the optimal location and size of fans and regulators, to predict the temperature and humidity by calculating the convective heat transfer coefficient and the sensible and latent heat transfer rates, and to estimate the pollutant levels throughout the network. The temperature/humidity prediction model was applied to a military storage underground space and the relative differences of dry and wet temperatures were 1.5 ~ 2.9% and 0.6 ~ 6.1%, respectively. The convection-based pollutant transport model was applied to two different vehicle tunnels. Coefficients of turbulent diffusion due to the atmospheric turbulence were found to be 9.78 and 17.35$m^2$/s, but measurements of smoke and CO concentrations in a tunnel with high traffic density and under operation of ventilation equipment showed relative differences of 5.88 and 6.62% compared with estimates from the convection-based model. These findings indicate convection is the governing mechanism for pollutant diffusion in most of the tunnel-type spaces.

  • PDF

In-situ Rock Stress Measurement at the Water Tunnel Sites in the OO Oil Storage Facility with Hydraulic Fracturing Method (수압파쇄법을 이용한 OO 원유비축시설 내 수벽 터널에서의 초기응력 측정)

  • Bae, Seong-Ho;Kim, Jae-Min;Kim, Jang-Soon;Lee, Young-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.1
    • /
    • pp.80-89
    • /
    • 2008
  • The influence of in-situ rock stress on the stability of an underground rock structure increases as the construction depth become deeper and the scale of a rock structure become larger. In general, hydraulic fracturing stress measurement has been performed in the surface boreholes of the target area at the design stage of an underground structure. However, for some areas where the high horizontal stresses were observed or where the overstressed conditions caused by topographical and geological factors are expected, it is desirable to conduct additional in-situ stress measurement in the underground construction site to obtain more detailed stress information for ensuring the stability of a rock structure and the propriety of current design. The study area was a construction site for the additional underground oil storage facility located in the south-east part of OO city, Jeollanam-do. Previous detailed site investigation prior to the design of underground structures revealed that the excessive horizontal stress field with the horizontal stress ratio(K) greater than 3.0 was observed in the construction area. In this study, a total of 13 hydraulic fracturing stress measurements was conducted in two boreholes drill from the two water tunnel sites in the study area. The investigation zone was from 180 m to 300 m in depth from the surface and all of the fracture tracing works were carried out by acoustic televiewer scanning. For some testing intervals at more than 200 m ind depth from surface, the high horizontal stress components the horizontal stress ratio(K) greater than 2.50 were observed. And the overall investigation results showed a good agreement with the previously performed test.