• Title/Summary/Keyword: underground storage

Search Result 403, Processing Time 0.025 seconds

A Case Study on the Utilization of Underground Building (지중건축의 활용에 관한 사례연구)

  • Suh, Eung-Chul;Lim, Sang-Hoon;Jang, Moon-Seok;Yoo, Heon-Hyung
    • KIEAE Journal
    • /
    • v.1 no.1
    • /
    • pp.17-26
    • /
    • 2001
  • The purpose of this study is to develop an underground Building. Population tends to concentrate in large cities. In result, the cities lacks housings. Underground space may be a attractive space by being able to gain alternative energy and get a cheap site, protect environment at the same time. The earth or ground is a useful medium for a long-term heat source and storage of it's heat. Also the underground space has the status of stabilization, the lower heating load and the similar heat transfer coefficient of the inside wall surface comparing to that of residential space. Utilization of underground space has many advantages to cope with lack of building sites and energy conservation, etc. As a result, it is expected to provide a useful information for the practical use of Underground building.

  • PDF

A Numerical Model of Inverse Analysis for Estimating the Clogging in the Underground LPG Storage Cavern (지하 LPG 저장공동에서의 Clogging 추정을 위한 역해석 수치모형)

  • 강태섭;한일영
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.161-167
    • /
    • 1997
  • A numerical model (SK-EST) for estimating hydraulic conductivity using monitoring data of underground LPG storage cavern was developed. The model calculates hydraulic conductivity from matrix equation which is established from the distribution of hydraulic potential. To verify the applicability of this model, an inverse analysis was performed using the monitoring data of pressure cell of an operating underground LPG storage cavern. And also using the water pressure parker test data which were obtained to look over the operation capability of pressure cell, conductivity variation with depth was estimated using the developed numerical model (SK-EST) and was compared with in situ results.

  • PDF

Application of A Discrete Fracture Flow and Mass Transport Simulation Technique Assessing Tightness Criteria for Underground LPG Storage Cavern (지하 LPG 저장공동의 기밀성평가를 위한 분리열극개념의 지하수유동 및 용질이동 모형 모의기법 적용)

  • 한일영;조성만;정광필
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.155-165
    • /
    • 1995
  • Fluid flow studies of fractured rocks require three-dimensional modeling of the fracture system. The stochastic discrete fracture models constructed by Monte Carlo simulation technique were applied to the analysis of groundwater flow and mass transport in fractured rock for the assessment of tightness criteria of underground LPG storage cavern. The parameters that most affect the conceptual discrete fracture modeling proved either fracture orientation or size and on the fract'lre flow interpretation proved conductive fracture intensity. The fracture transmissivity played important role in solute transport in fractured rock simulated by particle tracking approach. It was partly recognized that the calibrated stochastic discrete fracture model can be used for the tightness criteria of underground LPG storage cavern.

  • PDF

A Study on the Effect of. Oil Leakage for Soil Contamination, Plants and Groundwater (오일의 누출이 토양오염, 식생 및 지하수에 주는 영향에 관한 연구)

  • 진성기;도덕현;최규홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.141-152
    • /
    • 1994
  • Our experiment investigated the degree of soil contaimination caused by oil leakage. Each soil sample was taken by boring 5, 8m below the test areas, located 5 to 30m from storage tanks at oil stations. According to the results from a series of laboratory tests(both soxhiet extract test and gas chromatograph test), Traces of a light oil were found in all samples except in Dj8, rocky soil and gasoline and petroleum were not detected. We concluded that soil contamination was caused by the corrosion of storage tanks or alternatively by oil overflow caused during the flooding of underground water seeping into the tank during heavy rain fall or the spillage caused by carelessness during lubrication. Old stations without a concrete box enclosing their metal tanks run a greater risk of oil leakage. To research the effect of oil leakage on plant growth and underground water, We examined the results of research conducted overseas. According to these results, when oil leakage occurs, plant growth is repressed and agricultural crops experience low productivity levels. Also, the contamination of underground water can be serious when oil spreads to the aquifer layer. As a result of these problems, to prevent oil leakage and minimize its contaminating effects at oil stations, it is necessary to improve facilities of storage tanks and have the monitoring system of oil leakage.

  • PDF

Design consideration and explosion safety of underground ammunition storage facilities (지하탄약고의 설계요소 및 폭발안전 연구)

  • Kim, Oon-Young;Lee, Myung-Jae;Kim, Min-Seok;Kim, Joon-Youp;Joo, Hyo-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.1
    • /
    • pp.55-70
    • /
    • 2003
  • Ammunition magazine, which is installed on the ground, has difficulty in protecting from the external attack, and accidental explosion should cause great damage to the life and property. For these reasons, it is needed to develop underground magazine that it has the advantages of safety, security and maintenance. This paper introduce the design case for blasting facilities, which should resist blasting pressure, as well as layout of underground magazine, which takes a safety for explosion and a working space of loading/unloading machine into consideration. On the layout, in case of ${\bigcirc}{\bigcirc}$ underground magazine, put three storage chambers in position almost parallel with principle stress direction, where less effected on discontinuity and hard rock area. Also, secured safe distance according to safety criteria of the Defense Ministry, and verified suitable layout by trace simulation for loading/unloading machine on working stage. Blasting design was performed on evaluation of maximum blast pressure between donar and acceptor chambers, and design condition for blast door, valve, etc. Diminution facilities against explosion, such as thrust block or debris trap, determined its size after plan in accordance with blasting criteria and calculation by structural analysis.

  • PDF

Stability evaluation and microseismic monitoring around Large Underground Oil Storage Cavern in Over-stressed Rock Mass (과지압 암반 내 대규모 지하 유류비축기지 안정성 평가 및 Microseismic 계측)

  • Lee Hee-Suk;Lee Dae-Hyuck;Kim Ho-Yeong;Hong Jee-Soo;Choi Young-Tae;Kim Seok-Jin;Park Yeon-Jun
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.189-201
    • /
    • 2005
  • Brittle failure has been detected in over-stressed rock mass during the construction of oil storage cavern. The main characteristics of stress induced brittle failure of the site are introduced. Various evaluation and measures are sought to stabilize the over-stressed rock mass. The major results from numerical analysis of the cavern are presented, and from current microseismic monitoring to detect hazard from brittle failure are presented.

  • PDF

Influence of Underground Water Quality Adjacent to Landfill Site on Hydrogeologic Characteristics of LPG Storage Cavern (매립장 인근 지하수질이 LPG 저장 공동의 수리지질학적 특성에 미치는 영향)

  • Choi, Won-Gyu
    • Journal of Digital Convergence
    • /
    • v.12 no.8
    • /
    • pp.283-288
    • /
    • 2014
  • The underground water quality of petroleum products storage cavern is influenced by that of dumping and landfill sites adjacent to cavern. From the chemical analysis of underground water sampled from landfill site, insignificant amounts of As, Cu and Pb were detected in a half of test samples while Cd, Hg, $Cr^{6+}$, $CN^-$, TCE, PCE and Phenol were not detected in all samples. All measurements of $COD^{Mn}$ were below $8.0mg/{\ell}$ that can be negligible for the contamination by organic matters. The total bacteria counted from 1st and 2nd microbiological analysis were $94.84{\times}10^4cells/m{\ell}$ and $146.26{\times}10^{-4}cells/m{\ell}$, respectively, and all counts of the sulfate reducing bacteria were less than $2cells/m{\ell}$. It can be suggested that the water quality adjacent to storage cavern can also be studied to improve the reliability of hydrogeologic stability of storage cavern.

Numerical Study on the Thermal Stratification Behavior in Underground Rock Cavern for Thermal Energy Storage (TES) (열에너지 저장을 위한 지하 암반공동 내 열성층화 거동에 대한 수치해석적 연구)

  • Park, Do-Hyun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.188-195
    • /
    • 2012
  • Using a computational fluid dynamics (CFD) code, FLUENT, the present study investigated the thermal stratification behavior of Lyckebo storage in Sweden, which is the very first large-scale rock cavern for underground thermal energy storage. Heat transfer analysis was carried out for numerical cases with different temperatures of the surrounding rock mass in order to examine the effect of rock mass heating due to periodic storage and production of thermal energy on thermal stratification and heat loss. The change of thermal stratification with respect to time was quantitatively examined based on an index of the degree of stratification. The results of numerical simulation showed that in the early operational stage where the surrounding rock mass was less heated, the stratification of stored thermal energy was rapidly degraded over time, but the degradation and heat loss tended to reduce as the surrounding rock mass was heated during a long period of operation.

An Experimental Study on Groundwater Head, Injection Water Flowrate and Seepage Water Flowrate under Clogging State of Underground Storage (LPG 지하저장기지 수평 수벽공의 클로깅 현상 발생시 지하수위 및 주입수량, 삼출수량의 변화양상에 관한 실험적 연구)

  • Han Choong-Yong;Kang Joe M.
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.101-105
    • /
    • 1997
  • When the water curtain system is employed to keep the liquefied gas in the underground storage cavern, clogging is observed in borehole. Since this phenomenon causes serious difficulties in managing LPG storage cavern, it needs to detect the degree of clogging accurately under various circumstances. Thus, in this study the active factors of clogging, that is, groundwater head, injection water flowrate, and seepage water flowrate, were investigated experimentally using a physical model. Experimental results show that groundwater head around storage cavern increases as cavern Pressure increases, while it decreases as clogging becomes severe. The pressure in storage cavern is required to reduce up to atmospheric pressure in order to detect and identify the degree of clogging more accurately. The decrease of uroundwater head due to clogging slows down as the pressure in borehole increases. As amounts of suspended matters in injected water increase, both injection water flowrate and seepage water flowrate decrease linearly with time, and the flowrate of injection water drops rapidly compared with seepage water flowrate.

  • PDF

Measurement of Air Tightness of Concrete Block and its Construction Joint from a Model Experiment (모형실험을 통한 콘크리트 블록 및 시공이음부의 기밀성 측정)

  • Kim, Hyung-Mok;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.434-445
    • /
    • 2010
  • Underground compressed air energy storage (CAES) system in a lined rock cavern is considered one of the promising large-scale energy storage technologies. In this study, permeabilities of concrete lining block and its construction joint, which are the major components of an air tightness system of the undeground CAES, were measured from a model experiment. From the experiment, it was found that intrinsic permeability of construction joint was larger than that of concrete block by the order scale of $10^1{\sim}10^4$, so that it would be very important to control the quality of construction joints in-situ in order to secure air tightness of storage system. And the permeability of construction joint could be decreased as low as that of the concrete block by pasting an acryl-type adhesive on bonding surfaces. Higher degrees of water saturation of the concrete block resulted in the lower permeability, which is more preferable in the viewpoint of air tightness of storage cavern.