• Title/Summary/Keyword: underground engineering

Search Result 3,876, Processing Time 0.029 seconds

Seismic Analysis of Underground RC Box considering Elastoplastic Interface Element (탄소성 경계면 요소를 고려한 지하 철근콘크리트 박스의 내진 해석)

  • 남상혁;송하원;변근주
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.109-116
    • /
    • 2002
  • Since experimental evaluation of underground RC structures considering interaction with surrounding soil medium is quite difficult to be simulated, the evaluation for the underground RC structures using an analytical method can be applied very usefully. For underground structures interacted with surrounding soils, it is important to consider path-dependent RC constitutive model, soil constitutive model, and interface model between structure and soil, simultaneously. In this paper, an elastoplastic interface model which consider thickness of interface is proposed and applied for the analysis considering the interaction. Failure mechanism of underground RC box of two story and two box subway station under seismic action is obtained and the effects of ductility of intermediate column to entire underground RC system are investigated through analysis.

  • PDF

Exhaled breath Analysis for Body Burden Estimates of Aromatic Volatile Organic Compounds

  • Jo, Wan-Kuen;Song, Ki-Bum;Nam, Chang-Mo
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.25-29
    • /
    • 2000
  • The present study evaluated the body burden of aromatic VOCs in roadside and underground storekeepers. The Method Detection Limit(MDL) of the analytical system ranged from 0.2 to 0.4$\mu\textrm{g}$/m3 for the target VOCs. The recovery of the sampling system for the compounds was above 80%. For all the target compounds, the breath concentrations of the smokes were similar to or slightly higher than those of the nonsmokers for both the roadside and underground storekeepers. For Ethylbenzene, p-Xylene, and o-Xylene, the breath concentrations of the underground storekeepers were somewhat higher than those of the roadside storekeepers. In contrast, the breath m-xylene concentration of underground storekeepers was similar to that of roadside storekeepers. For both the roadside and underground storekeepers, the breath concentrations prior to and after work were not significantly different.

  • PDF

A Study on the Planning of Escape Facilities of Underground Space at Fire. -a case study at Underground Shopping Street- (화재시 지하공간의 피난시설계획에 관한 연구 -지하가를 중심으로-)

  • 이원석;이경회
    • Fire Science and Engineering
    • /
    • v.4 no.1
    • /
    • pp.13-19
    • /
    • 1990
  • Recently, the expansion of underground shopping street has a tendency to make a large maze in urban underground space. As the passers -by in underground streets have little information about these spaces, there can be a great danger at fire. From this point of view, this study aims at offering the basic data which needs to make a reasonable planning of escape facilities of underground shopping street. Therefore, safe performance evaluation program is developed for evaluating inhabitants' safety at each model. This program is composed of systematic equations which generalize each phenomenon at fire.

  • PDF

A preliminary numerical analysis study on the seismic stability of a building and underground structure by using SSI (SSI를 이용한 건물과 인접지하구조물의 내진 안정성에 대한 기초 수치해석 연구)

  • You, Kwang-Ho;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.23-38
    • /
    • 2018
  • Up to now, most of studies on seismic analysis have been limited to analyze buildings and underground structures individually so that the interaction between them could not be analyzed effectively. Thus, in this study, a dynamic analysis was conducted for soil-structure interaction with a complex underground facility composed of a building and an adjacent underground structure constructed on a surface soil and the bed rock ground conditions. Seismic stability was analyzed based on interstory drift ratio and bending stress of structure members. As a result, an underground structure has more effect on a high-rise building than a low-rise building. However the above structures were proved to be favorable for seismic stability. On the other hand, tensile bending stresses exceeded the allowable value at the underground part of the building and the adjacent underground structure so that it turned out that the underground part could be weaker than the above part. Therefore, it is inferred that above and underground structures should be analyzed simultaneously for better prediction of their interaction behavior during seismic analyses because there exist various structures around buildings in big cities.

A Study on the Detecting Underground Pipes Using Magnetic Mathod (자기장을 이용한 매설배관의 위치탐지에 관한 연구)

  • 석창성;배봉국;김정표
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.63-69
    • /
    • 2003
  • As increasing underground facilities, more effective management is needed nowadays. It is important to get an accurate information of underground facilities to manage that, so some methods of detecting location - electromagnetic induction method, ground penetration radar method, sound wave method - are used to obtain the information of underground facilities. In this study, a magnetic method to detect underground facilities was developed. In the magnetic method, underground facilities are detected by a detector and the magnetic marker which is a permanent magnet and used to marking the location by attaching underground facilities. A test field was constructed for experiment with the magnetic marker, PVC pipe, and steel pipe under ground 1.5m, and a ferromagnetic detector was used for measurement. Magnetic strengths of the magnetic marker were measured by the detector at each location in the test field, and analyzed by magnetic field analysis tool in the same condition. In the result, the underground pipes of 1.5m below were detectable within the deviation $\pm$0.2m. When For applying this method, it should be considered that ferromagnetic materials around the detector could affect a measured value.

THE PRIORITIZATION OF IMPROVEMENT NEEDS FOR UNDERGROUND CONSTRUCTION ENVIRONMENT

  • Sanggyu Lee;Goune Kang;Chang-Won Kim;Hunhee Cho;Kyung-In Kang
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.111-114
    • /
    • 2013
  • Underground construction requires long construction duration and a variety of equipment, and environmental management and improvement of its activities are considered necessary. For the purpose of the environmental improvement of underground construction activities, the appropriate development of technologies to reduce generated pollutants is mandatory. However, the analysis of the needs of technology development and the evaluation of development priorities should take precedence. In this research, the needs for the improvement of each construction activity are analyzed as a preliminary study for a proposed technology development plan to improve the environmental performance of underground construction. Firstly, environmental problem factors caused by underground construction activities are determined while underground construction types, methods, and activities are classified. A questionnaire survey to determine the needs for the improvement of each activity is then carried out. The survey indicated that the most urgent activity to be improved is that of cutting excavation, which causes environmental problems associated with flying dust. This study could be used as a basis for a technology development plan for the environmental improvement of underground construction activities. The result of this study, the priority of improvement needs, contributes to the effective allocation of a limited Research and Development (R&D) budget.

  • PDF

Psychological lssues in the Design of Underground Facilities (지하공간 설계에 있어서의 심리적 요인에 대한 고찰)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.4 no.2
    • /
    • pp.186-191
    • /
    • 1994
  • In recent decades, underground usage in urban areas has expanded from subways and utilities to include virtually every non-residential building function. Greater usage of underground space is envisioned in the more congested urban areas in the world such as Asia and Europe. This increasing interest in underground development is raising basic questions about whether people can work and live underground, and if so, what design techniques can sucessfully be employed. The actual experience of people in underground space, as well as general associations and image of the underground reveal predominantly negative attitudes. A number of design techniques have been suggested by researchers, or actually utilized by designers, to alleviate these potential problems for people in underground space. This paper identifies these psychological and physiological problems. In addition, design objective and possible solutions are briefly summarized. This is followed by a summary of special design problems and objectives related to road tunnels.

  • PDF

A study on drainage system of the room-and-pillar underground structure considering groundwater conditions (지하수 유출수 조건을 고려한 주방식 지하구조의 배수시스템 연구)

  • Lee, Chulho;Hyun, Younghwan;Hwang, Jedon;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.675-683
    • /
    • 2015
  • The room-and-pillar construction method for underground space is adopted from the room-and-pillar mining method which is one of the most popular underground mining method in the world. Drainage system in the room-and-pillar underground construction method can be similar with the concept of single shell in tunnel because additional reinforcement except the TSL (thin spray-on liner) is not applied in the room-and-pillar construction method. That is, to decrease groundwater level and maintain safety in tunnel, the drainage pin hole inside lining (shotcrete) can be used. However, if total amount of outflow in the underground structure is relatively small or groundwater is not detected, such drainage system will not be useful and cause additional construction cost. In this study, outflow of conventional tunnels in South Korea was investigated and the criteria to determine whether the drainage pin hole is effective was suggested. And the guided drainage system was suggested when drainage pin hole was not applied in the room-and-pillar construction method.

A Study on the Safety Distance of Underground Structures in Asepct of Ground Vibration Velocity due to Explosions (지중 구조물의 지반 진동 안전거리 설정에 관한 현장적용연구)

  • Park, Sangjin;Kang, Jiwon;Park, Young Jun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.4
    • /
    • pp.87-94
    • /
    • 2016
  • The necessity to consider stability of underground structures constructed below or adjacent ammunition depots has been increased since the expansion of urban area and construction of infrastructure. However, there are a few studies on influence of accidental explosion on underground structures. In this study, the process of assessing the stability of underground structures is suggested and its applicability is verified through the case study. AUTODYN and SPACECLAIM are used to execute the structure and geotechnical modelling, and explosion effect is simulated and vibration velocities are calculated. According to the result of this case study, it is concluded that underground structure constructed 70m below ground might be rarely influenced by the simulated explosion. The process used in this study could be used to design the underground ammunition complex and analyse the stability of underground facilities being influenced by periodical vibration.

Infiltration characteristic of modified slurry and support efficiency of filter cake in silty sand strata

  • Sai Zhang;Jianwen Ding;Ning Jiao;Shuai Sun;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • To improve the understanding of infiltration characteristic of modified slurry and the support efficiency of filter cake in silty sand strata, the slurry infiltration (SI) and filter cake formation (FCF) were investigated in a laboratory apparatus. The water discharge and the excess pore pressure at different depths of silty sand strata were measured during SI. The relationship between permeability coefficient/thickness ratio of filter cake (kc/ΔL) and effective slurry pressure conversion rate of filter cake (η) were analyzed. Moreover, the SI and FCF process as well as the modification mechanism of CMC (carboxymethyl cellulose) were clarified. The experimental results indicate the formation of only external filter cake in the silty sand strata. The slurry particles obtain thicker water membrane after being modified by CMC, which blocks partial water path in filter cake and decreases the water discharge significantly. The silty sand excavated from tunnel face also contributes to the water discharge reduction. The kc of the external filter cake ranges from 3.83×10-8 cm/s to 7.44×10-8 cm/s. The η of the external filter cake is over 96%, which decreases with increasing kc/ΔL. A silty sand content within 10% is suggested during construction to ensure the uniformity of the filter cake.