• Title/Summary/Keyword: underground engineering

Search Result 3,876, Processing Time 0.036 seconds

Analysis of Characteristics of Horizontal Response Spectrum of Velocity Ground Motions from 5 Macro Earthquakes (5개 중규모 지진의 속도 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.471-479
    • /
    • 2011
  • The velocity horizontal response spectra using the observed ground motions from the recent 5 macro earthquakes, equal to or larger than 4.8 in magnitude, around Korean Peninsula were analysed and then were compared to the acceleration horizontal response spectra, seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and finally the Korean Standard Design Response Spectrum for general structures and buildings. 102 velocity horizontal ground motions, including NS and EW components, were used for velocity horizontal response spectra and then normalized with respect to the peak velocity value of each ground motion. First, the results showed that velocity horizontal response spectra have larger values at the range of medium natural period, but acceleration horizontal response spectra have larger values at the range of short natural periods. Secondly, the results also showed that velocity horizontal response spectra exceed Reg. Guide 1.60 for longer natural periods bands less than 6-7 Hz. Finally, the results were also compared to the Korean Standard Response Spectrum for the 3 different soil types(SC, SD, and SE soil type) and showed that velocity horizontal response spectra revealed much higher values for the frequency bands below 1.5(SC), 2.0(SD), and 3.0(SE) seconds, respectively, than the Korean Standard Response Spectrum. The results suggest that the fact that acceleration, velocity, and displacement horizontal response spectra have larger values at the range of short, medium, and long natural periods, respectively, can be applied consistently to those form domestic ground motion, especially, the velocity ground motion. Information on response spectrum at such medium range periods can be very important since the domestic design of buildings and structures emphasizes recently medium and long natural periods than short one due to increased super high-rise buildings.

Evaluation of Stress Thresholds in Crack Development and Corrected Fracture Toughness of KURT Granite under Dry and Saturated Conditions (포화유무에 따른 KURT 화강암의 균열손상 기준 및 수정 파괴인성 측정(Level II Method))

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.256-269
    • /
    • 2020
  • The objective of this study is to evaluate the stress thresholds in crack development and the corrected fracture toughness of KURT granite under dry and saturated conditions. The stress thresholds were identified by calculation of inelastic volumetric strain from an uniaxial compression test. The corrected fracture toughness was estimated by using the Level II method (Chevron Bend specimen), suggested by ISRM (1988), in which non-linear behaviors of rock was taken into account. Average crack initiation stress(σci) and crack damage stress(σcd) under a dry condition were 91.1 MPa and 128.7 MPa. While, average crack initiation stress(σci) and crack damage stress(σcd) under a saturated condition were 58.2 MPa and 68.2 MPa. The crack initiation stress and crack damage stress of saturated ones decreased 36% and 47% respectively compared to those of dry specimens. A decrease in crack damage stress is relatively larger than that of crack initiation stress under a saturated condition. This indicates that the unstable crack growth can be more easily generated because of the saturation effect of water compared to the dry condition. The average corrected fracture toughness of KURT granite was 0.811 MPa·m0.5. While, the fracture toughness of saturated KURT granite(KCB) was 0.620 MPa·m0.5. The corrected fracture toughness of rock in saturated condition decreases by 23.5% compared to that in dry condition. It is found that the resistance to crack propagation decreases under the saturated geological condition.

Numerical Modelling for the Dilation Flow of Gas in a Bentonite Buffer Material: DECOVALEX-2019 Task A (벤토나이트 완충재에서의 기체 팽창 흐름 수치 모델링: DECOVALEX-2019 Task A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.382-393
    • /
    • 2020
  • The engineered barrier system of high-level radioactive waste disposal must maintain its performance in the long term, because it must play a role in slowing the rate of leakage to the surrounding rock mass even if a radionuclide leak occurs from the canister. In particular, it is very important to clarify gas dilation flow phenomenon clearly, that occurs only in a medium containing a large amount of clay material such as a bentonite buffer, which can affect the long-term performance of the bentonite buffer. Accordingly, DECOVALEX-2019 Task A was conducted to identify the hydraulic-mechanical mechanism for the dilation flow, and to develop and verify a new numerical analysis technique for quantitative evaluation of gas migration phenomena. In this study, based on the conventional two-phase flow and mechanical behavior with effective stresses in the porous medium, the hydraulic-mechanical model was developed considering the concept of damage to simulate the formation of micro-cracks and expansion of the medium and the corresponding change in the hydraulic properties. Model verification and validation were conducted through comparison with the results of 1D and 3D gas injection tests. As a result of the numerical analysis, it was possible to model the sudden increase in pore water pressure, stress, gas inflow and outflow rate due to the dilation flow induced by gas pressure, however, the influence of the hydraulic-mechanical interaction was underestimated. Nevertheless, this study can provide a preliminary model for the dilation flow and a basis for developing an advanced model. It is believed that it can be used not only for analyzing data from laboratory and field tests, but also for long-term performance evaluation of the high-level radioactive waste disposal system.

Numerical analysis of FEBEX at Grimsel Test Site in Switzerland (스위스 Grimsel Test Site에서 수행된 FEBEX 현장시험에 대한 수치해석적 연구)

  • Lee, Changsoo;Lee, Jaewon;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.359-381
    • /
    • 2020
  • Within the framework of DECOVALEX-2019 Task D, full-scale engineered barriers experiment (FEBEX) at Grimsel Test Site was numerically simulated to investigate an applicability of implemented Barcelona basic model (BBM) into TOUGH2-MP/FLAC3D simulator, which was developed for the prediction of the coupled thermo-hydro-mechanical behavior of bentonite buffer. And the calculated heater power, temperature, relative humidity, total stress, saturation, water content and dry density were compared with in situ data monitored in the various sections. In general, the calculated heater power and temperature provided a fairly good agreement with experimental observations, however, the difference between power of heater #1 and that of heater #2 could not captured in the numerical analysis. It is necessary to consider lamprophyre with low thermal conductivity around heater #1 and non-simplified installation progresses of bentonite blocks in the tunnel for better modeling results. The evolutions and distributions of relative humidity were well reproduced, but hydraulic model needs to be modified because the re-saturation process was relatively fast near the heaters. In case of stress evolutions due to the thermal and hydraulic expansions, the computed stress was in good agreement with the data. But, the stress is slightly higher than the measured in situ data at the early stage of the operation, because gap between rock mass and bentonite blocks have not been considered in the numerical simulations. The calculated distribution of saturation, water content, and dry density along the radial distance showed good agreement with the observations after the first and final dismantling. The calculated dry density near the center of the FEBEX tunnel and heaters were overestimated compared with the observations. As a result, the saturation and water content were underestimated with the measurements. Therefore, numerical model of permeability is needed to modify for the production of better numerical results. It will be possible to produce the better analysis results and more realistically predict the coupled THM behavior in the bentonite blocks by performing the additional studies and modifying the numerical model based on the results of this study.

Impact Evaluation of Water Footprint on Stages of Drainage Works (배수공 각 작업 단계별 물발자국 영향평가)

  • Chen, Di;Kim, Joon-Soo;Batagalle, Vinuri;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.225-231
    • /
    • 2020
  • Fresh water that can be used by a person of the total amount of water on the planet is increased because it is less than 0.01 % except underground water, ice and snow, etc. water management response need. In order to protect and efficiently utilize water resources, major countries are conducting water footprint studies that can quantitatively estimate the amount of water put into the operating phase of the resource harvesting phase, mainly agriculture. Korea has also recently developed a number of policies in order to cope with water shortages, and in the construction industry, as well as the need for basic research to support it has been emphasized. This study was constructed DB up to the raw material harvesting step, the transport step, the production stage in order to estimate the water consumption of resources to be put into the work process to target the drainage of the road. Water usage estimation method was utilized the method presented in the Water Footprint Manual and the environmental score card certification guide, unit water usage each drainage main method was calculated after estimating the water footprint considering the water character factor, indirect water and the direct water, the water consumption factor of material input to each process. Brown asphalt, rebar, remicon of the drainage material as a result of the water footprint calculation accounted for 97 % of the total. Drainage method is a culvert, a side channel, a culvert wing wall, reinforced concrete open channel accounted for 92.2 % of the total. Drainage total step-by-step calculated water consumption and water footprint was found in order of raw material harvesting step, transport stage, production stage. Water footprint each drainage method or total drainage material calculated in this study can be used as a base data in the agricultural and construction sectors. In order to increase the reliability of the analysis, it is believed that further overseas databases will be needed for continuous review and research.

Settlement Instrumentation of Greenhouse Foundation in Reclaimed Land (간척지 온실 기초의 침하량 검토)

  • Choi, Man Kwon;Yun, Sung Wook;Yu, In Ho;Lee, Jong-Won;Lee, Si Young;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.85-92
    • /
    • 2015
  • This study examined the settlement of a 1-2W type greenhouse using a timber pile, which was recently established on Gyehwa-do reclaimed land, in order to obtain base data for the construction of a greenhouse on reclaimed land. The results of this study are as follows. foundation and timber pile increased over time, irrespective of the interior and exterior of the upon investigation of the ground, it was confirmed that there was no soft rock stratum (bedrock), and that a sedimentary stratum existed under the fill deposit, which is estimated to have been reclaimed during the site renovation. It was also found that a weathered zone was located under the fill deposit and sedimentary stratum, and that the soil texture of the entire ground floor consisted of clay mixed with sand, silty clay, and granite gneiss, in that order, regardless of boreholes. In addition, the underground water level was 0.3m below ground, regardless of boreholes. Despite a slight difference, the settlement of the greenhouse or measurement sites (channels). With regard to the pillar inside the greenhouse, except in the case of CH-2, the data at a site located on the side wall of the greenhouse (wind barrier side) indicated vibrations of relatively larger amplitude. Moreover, the settlement showed a significant increase during a certain period, which was subsequently somewhat reversed. Based on these phenomena, it was verified that the settlement range of each site in the interior and exterior of the greenhouse was between 1.0 and 7.5mm at this time, except in the case of CH-1. The results of the regression analysis indicated good correlation, with the coefficient of determination by site ranging between 0.6362 and 0.9340. Furthermore, the coefficient of determination ranged between 0.6046 and 0.8822 on the exterior of the greenhouse, which is lower than inside the greenhouse, but still indicates significant correlation.

Swelling and Mechanical Property Change of Shale and Sandstone in Supercritical CO2 (초임계 CO2에 의한 셰일 및 사암의 물성변화 및 스웰링에 관한 연구)

  • Choi, Chae-Soon;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.266-275
    • /
    • 2012
  • In this study, a method is devised to implement a supercritical $CO_2$ ($scCO_2$) injection environment on a laboratory scale and to investigate the effects of $scCO_2$ on the properties of rock specimens. Specimens of shale and sandstone normally constituting the cap rock and reservoir rock, respectively, were kept in a laboratory reactor chamber with $scCO_2$ for two weeks. From this stage, a chemical reaction between rock surface and the $scCO_2$ was induced. The effect of saline water was also investigated by comparing three conditions ($scCO_2$-rock, $scCO_2-H_2O$-rock and $scCO_2$-brine(1M)-rock). Finally, we checked the changes in the properties before and after the reaction by destructive and nondestructive testing procedures. The swelling of shale was a main concern in this case. The experimental results suggested that $scCO_2$ has a greater effect on the swelling of the shale than pure water and brine. It was also observed that the largest swelling displacement of shale occurred after a reaction with the $H_2O-scCO_2$ solution. The results of a series of the destructive and nondestructive tests indicate that although each of the property changes of the rock differed depending on the reaction conditions, the $H_2O-scCO_2$ solution had the greatest effect. In this study, shale was highly sensitive to the reaction conditions. These results provide fundamental information pertaining to the stability of $CO_2$ storage sites due to physical and chemical reactions between the rocks in these sites and $scCO_2$.

Effects of Temperature and Water Pressure on the Material Properties of Granite & Limestone from Gagok Mine (온도와 수압이 가곡광산 화강암과 석회암의 물성에 미치는 영향)

  • Yoon, Yong-Kyun;Baek, Young-Jun;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.33-40
    • /
    • 2011
  • This study focuses on having a temperature and water pressure effects on the change of material properties of rocks. Granite and limestone specimens from Gagok Mine were thermally treated with predetermined temperatures of 200, 300, 400, 500, 600 and $700^{\circ}C$ (excepting $700^{\circ}C$ for limestone) to estimate the reduction of material properties of rocks caused by heat. Specific gravity, effective porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus and Poisson's ratio for pre-heated specimens were measured. With increasing temperature, material properties of both rock specimens change sequentially. Significant changes of specific gravity, effective porosity and elastic wave porosity occur above $400^{\circ}C$ for granite and $300^{\circ}C$ for limestone. Changes of uniaxial compressive strength, Young's modulus and Poisson's ratio seem to be similar to those of physical properties. GSI of 500, 600 and $700^{\circ}C$ specimens inferred by using uniaxial compressive strength and Young's modulus of preheated granite specimens is found to be 81, 66 and 58 each. In case of pre-heated limestone specimens of 400, 500 and $600^{\circ}C$, the corresponding GSI is 76, 71 and 65 each. 500, 600 and $700^{\circ}C$ granite specimens and 400, 500 and $600^{\circ}C$ limestone specimens were pressurized to 7.5 MPa and their effective porosity, elastic wave velocity, uniaxial compressive strength and Young's modulus were measured. The average value of material properties (mentioned above) of 500, 600 and $700^{\circ}C$ granite specimens under water pressure compared with material properties of non-pressurized pre-heated specimens exhibits the reduction of 7.6, 11.3 and 14.9%, respectively. In case of 400, 500 and $600^{\circ}C$ limestone specimens under water pressure, the average value of material properties decreases by 8.2, 13.8 and 21.9%, respectively.

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF

A Study on the Construction method of Stamped earthen wall (판축토성(版築土城) 축조기법(築造技法)의 이해(理解) - 풍납토성(風納土城) 축조기술(築造技術)을 중심(中心)으로 -)

  • Shin, Hee-kweon
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.102-115
    • /
    • 2014
  • The stamped earth method is a typical ancient engineering technique which consists of in-filling wooden frame with layers of stamped earth or sand. This method has been universally used to construct earthen walls and buildings, etc. The purpose of this article is to understand the construction method and principles of the stamped earthen wall through analysis of various construction techniques of Pungnaptoseong Fortress(Earthen Fortification in Pungnap-dong). First of all, the ground was leveled and the foundations for the construction of the earthen wall were laid. The underground foundation of the earthen walls was usually constructed by digging into the ground and then in-filling this space with layers of mud clay. Occasionally wooden posts or paving stones which may have been used to reinforce the soft ground were driven in. The method of adding layers of stamped earth at an oblique angle to either side of a central wall is the most characteristic feature of Pungnaptoseong Fortress. Even though the traces of fixing posts, boards, and the hardening of earth - all signatures of the stamped earth technique - have not been identified, evidence of a wooden frame has been found. It has also been observed that this section was constructed by including layers of mud clay and organic remains such as leaves and twigs in order to strengthen the adhesiveness of the structures. The outer part of the central wall was constructed by the anti-slope stamped earth technique to protect central wall. In addition a final layer of paved stones was added to the upper part of the wall. These stone layers and the stone wall were constructed in order to prevent the loss of the earthen wall and to discharge and drain water. Meanwhile, the technique of cementing with fire was used to control damp and remove water in stamped earth. It can not be said at present that the stamped earth method has been confirmed as the typical construction method of Korean ancient earthen walls. If we make a comparative study of the evidence of the stamped earth technique at Pungnaptoseong Fortress with other archeological sites, progress will be made in the investigation of the construction method and principles of stamped earthen wall.