• Title/Summary/Keyword: underground engineering

Search Result 3,876, Processing Time 0.028 seconds

Radian of the vault influencing the seismic performances of straight wall arch underground structures

  • Ma, Chao;Lu, Dechun;Qi, Chengzhi;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.637-649
    • /
    • 2021
  • Great efforts have been conducted to investigate the seismic performances of the arch and rectangular underground structures, however, the differences between seismic responses of these two types of underground structures, especially the vault radian influencing the seismic responses of arch structures are not clarified. This paper presents a detailed numerical investigation on the seismic responses of arch underground structures with different vault radians, and aims to illustrate the rule that vault radian affects the seismic responses of underground structures. Five arch underground structures are built for nonlinear soil-structure interaction analysis. The internal forces of the structural components of the underground structures only under gravity are discussed detailedly, and an optimum vault radian for perfect load-carrying functionality of arch underground structures is suggested. Then the structures are analyzed under seven scaled ground motions, amounting to a total of 35 dynamic calculations. The numerical results show that the vault radian can have beneficial effects on the seismic response of the arch structure, compared to the rectangular underground structures, causing the central columns to suffer smaller axial force and horizontal deformation. The conclusions provide some directive suggestions for the seismic design of the arch underground structures.

Seismic deformation behaviors of the soft clay after freezing-thawing

  • Zhen-Dong Cui;Meng-Hui Huang;Chen-Yu Hou;Li Yuan
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.303-316
    • /
    • 2023
  • With the development and utilization of urban underground space, the artificial ground freezing technology has been widely used in the construction of underground engineering in soft soil areas. The mechanical properties of soft clay changed greatly after freezing and thawing, which affected the seismic performance of underground structures. In this paper, a series of triaxial tests were carried out to study the dynamic response of the freezing-thawing clay under the seismic load considering different dynamic stress amplitudes and different confining pressures. The reduction factor of dynamic shear stress was determined to correct the amplitude of the seismic load. The deformation development mode, the stress-strain relationship and the energy dissipation behavior of the soft clay under the seismic load were analyzed. An empirical model for predicting accumulative plastic strain was proposed and validated considering the loading times, the confining pressures and the dynamic stress amplitudes. The relevant research results can provide a theoretical reference to the seismic design of underground structures in soft clay areas.

NUMERICAL STUDY WITH VENT SHAFT POSITION IN UNDERGROUND STATION (대심도 지하정거장에서 수직구 위치에 따른 수치적 연구)

  • Oh, Hyun-Joo;Shin, Dea-Yong;Lee, Sang-Gun;Kim, Dong-Hyun;Kim, Charn-Jung
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.36-43
    • /
    • 2012
  • When a high-speed train passes an underground station, large pressure waves are generated due to the piston effect. These pressure waves can cause the problems of vibration and noise as well as the ear discomfort of passengers at the underground station. This work numerically analyzed the pressure wave generation and propagation in an high-speed railway underground station, and the optimal location for vent shafts was studied to improve the passenger comfort by reducing the magnitude of the pressure wave and its rate of change. The evolution of pressure field in the underground station was calculated using a CFD(Computational Fluid Dynamics) software(Fluent), where the axis-symmetric two-dimensional model verified by Wu was used. And this study is applied to modelling of the underground station and the tunnel from Daegok station A-line of GTX(Great Train Express). From the result, we can have a conclusion that the role of vent shafts respectively were different according to the position in and out the underground station. Also Vent shaft in the underground station widely reduced pressure magnitude. And vent shaft out underground station reduced initial pressure peak value. Double vent shafts installed at tunnel toward station entrance and inside of the tunnel are the most efficient to reduce pressure. and pressure reduction increases according to the number of vent shaft.

A Study on Structural Behavior of Underground Openings in Discontinuous Rock Masses (불연속면의 영향을 고려한 암반동굴의 구조거동연구)

  • 김선훈;최규섭;이경진;김진웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.20-25
    • /
    • 1991
  • In order to predict properly the effects of ground motion associated wi th earthquakes on underground radioactive waste disposal facilities, understanding of the structural behavior of an underground opening in discontinuous rook masses subjected to dynamic loadings is essential. Therefore, this paper includes literature review on computational models for discontinuous rook masses and on mathematical models for the structural analysis of underground openings. Then, structural analyses of underground openings using the distinct element computer program written for the static and dynamic analysis of discontinuous rook masses have been performed.

  • PDF

Numerical Analysis of the Effect of Ground Source Heat Pump Systems on the Underground Temperature (지열 시스템의 도입이 지중온도환경에 미치는 영향에 대한 해석적 검토)

  • Nam, Yujin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.427-431
    • /
    • 2013
  • Ground heat pump systems utilize the annually stable underground temperature to supply heat for space heating and cooling. The underground temperature affects not only the underground ecosystem, but also the performance of these systems. However, in spite of the widespread use of these systems, there have been few researches on the effect of the systems on underground temperature. In this research, case studies with numerical simulation have been conducted, in order to estimate the effect of ground heat pump systems on underground temperature. The simulation was coupled with the ground water-ground heat transfer model and the ground surface heat transfer model. In the result, it was found that the underground change depends on the heat transfer from the ground surface, the heat exchange rate, and the heat conductivity of soil.

Status and Issues for Underground Space Development in Singapore (싱가포르 지하공간 개발의 현황 및 이슈)

  • Lee, Hee Suk;Zho, Yingxin
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.304-324
    • /
    • 2018
  • Singapore government is strongly promoting the development and utilization of underground space in national level due to the nature of the city state which lacks the land. As well as conventional underground utilization in shallow depth such as metro and underground roads, large rock cavern utilization has been started after the successful completion of the underground ammunition depot in the rock, and Jurong Rock Cavern, the second large underground cavern project has just been completed. In this paper, after evaluating the conditions of the underground development in rock mass through the analysis of the geology of Singapore, the history and current status of underground development are examined. Several creative development plans from Singapore government such as underground reservoirs, underground automation logistics systems and underground warehouses storage etc. are introduced with technical issues. This paper also discusses the problems and issues related to the development of large underground space in rock mass in Singapore. It is expected that such active development of underground space in Singapore can give many opportunities and also challenges for rock engineering and industry in the future.

Development of New Methods for Position Estimation of Underground Acoustic Source Using a Passive SONAR System

  • Jarng, Soon-Suck;Lee, Je-Hyeong;Ahn, Heung-Gu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.69-75
    • /
    • 2000
  • The aim of the work described in this paper is to develop a complex underground acoustic system which detects and localizes the origin of an underground hammering sound using an array of hydrophones located about 100m underground. Three different methods for the sound localization will be presented, a time-delay method, a power-attenuation method and a hybrid method. In the time-delay method, the cross correlation of the signals received from the array of sensors is used to calculate the time delays between those signals. In the power-attenuation method, the powers of the received signals provide a measure of the distances of the source from the sensors. In the hybrid method, both informations of time-delays and power-ratios are coupled together to produce better performance of position estimation. A new acoustic imaging technique has been developed for improving the hybrid method. This new acoustic imaging method shows the multi-dimensional distribution of the normalized cost function, so as to indicate the trend of the minimizing direction toward the source location. For each method the sound localization is carried out in three dimensions underground. The distance between the true and estimated origins of the source is 28m for a search area of radius 250m.

  • PDF

Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading

  • Zhen-Dong Cui;Long-Ji Zhang;Zhi-Xiang Zhan
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.411-426
    • /
    • 2023
  • Soft clay is widely distributed in the southeast coastal areas of China. Many large underground structures, such as subway stations and underground pipe corridors, are shallow buried in the soft clay foundation, so the dynamic characteristics of the soft clay must be considered to the seismic design of underground structures. In this paper, the dynamic characteristics of saturated soft clay in Shanghai under the bidirectional excitation for earthquake loading are studied by dynamic triaxial tests, comparing the backbone curve and hysteretic curve of the saturated soft clay under different confining pressures with those under different vibration frequencies. Considering the coupling effects of the confining pressure and the vibration frequency, a fitting model of the maximum dynamic shear modulus was proposed by the multiple linear regression method. The M-D model was used to fit the variations of the dynamic shear modulus ratio with the shear strain. Based on the Chen model and the Park model, the effects of the consolidation confining pressure and the vibration frequency on the damping ratio were studied. The results can provide a reference to the earthquake prevention and disaster reduction in soft clay area.

Estimation of greenhouse gas emissions from an underground wastewater treatment plant

  • Kyung, Daeseung;Jung, Da-Yoon;Lim, Seong-Rin
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.173-177
    • /
    • 2020
  • Wastewater treatment plants (WWTPs) have been recognized as one of the significant greenhouse gas (GHG) generators, due to the complex biochemical reaction and huge consumption of energy and materials. Recently, WWTPs have been built underground and they will be confronted with the challenges of mitigating GHG emissions and improving the quality of treated wastewater. Here, we focus on estimating GHG emissions to set up effective management plans for a WWTP built underground. First, we apply the process-based life cycle assessment (LCA) with an inventory database of the underground WWTP for a case study. Then, we identify significant factors affecting GHG emissions during service life using sensitivity analysis and suggest the proper tactics that could properly reduce GHG emissions from the WWTP.

An Analytical Study on the Patents Substance of Urban Underground Space Development Technology (도시지하공간 개발기술에 대한 특허동향 분석)

  • Lee, Gahng-Ju
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.6
    • /
    • pp.129-137
    • /
    • 2019
  • The purpose of this study is to present systematic information and direction to urban underground space development industry, civil engineering and R&D. Regarding the development of urban underground space, the situation in Korea, especially now in Seoul, can be called an underground Renaissance. The Superground project, which has been going on for several years through international competition, is now completed and is about to open the Seoul Architecture Museum. Leading underground space complex development project of Yeongdongdaero, which is the largest living underground space in human history, spectral projects such as the Seoul section of the GTX routes, making underground roads of the Dongbu Expressway and the Seobu Expressway are now speeding up progress. Recently, plans have been made to use the underground more actively through the restructuring project of Gwanghwamun Square, the face of Seoul. And then, patents are indispensable resources for establishing a strategy for R&D as one of the indices showing what technologies have been developed and what technology development will be done in the future. Based on this background, this study attempts to classify and define the technical elements of urban underground space development through the analysis of patents of major countries in the world, and analyze and present state of technology level and situation accordingly.