• Title/Summary/Keyword: underground discharge

Search Result 119, Processing Time 0.028 seconds

Review Study on Integrated Carbon Cycle System for the Dairy Cattle Production (젖소 사육에서 탄소 순환 체계에 관한 고찰 연구)

  • Kim, Ki-Youn;Ko, Han-Jong;Kim, Chi-Ho;Choi, Eun-Gyu;Kim, Joung-Ku;Ryou, Young-Sun;Kim, Hyeon-Tae
    • Journal of Animal Environmental Science
    • /
    • v.18 no.1
    • /
    • pp.19-24
    • /
    • 2012
  • The first objective of this study is to estimate emission coefficient of organic carbon regarding its inflow and discharge for dairy farm through reviewing domestic and foreign literature published or reported previously. Its second objective is to provide fundamental data to establish carbon cycle system related to livestock production. Based on literature review, emission coefficients by inflow of organic carbon into dairy farm were 5.9 ton C/head/year for feedstuff ingestion by milk cow, 2.3 ton C/head/year for recycling manure compost of milk cow to grassland, 318 g C/$m^2$/year for contents in grassland, 145 g C/$m^2$/year for contents in fodder crop, and 17 g C/$m^2$/year for $CO_2$ uptake by fodder crop, respectively. on the other hand, emission coefficients by discharge of organic carbon from dairy farm were 2,9 ton C/head/year for emission of $CO_2$ and $CH_4$ by respiration and burp of milk cow, 0.4 ton C/head/year for emission of $CO_2$ and $CH_4$ by decomposition of organic carbon in manure of milk cow, 440 g C/$m^2$/year for emission of $CO_2$ from grassland, and 0 for elution of organic carbon in grassland into underground water, respectively.

Water Quality Monitoring through Tube-Well Survey at Foot-and-mouth Disease Carcass Disposal Sites (구제역 가축매몰지 인근 지하수 관측정 수질 모니터링)

  • Huh, In-Ryang;Kim, Kei-Woul;Choi, Geum-Jong;Lee, Teak-Soo
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • Objectives: The purpose of this study is to evaluate the characteristics of leachate discharged from livestock burial sites in Gangwondo resulting from foot-and-mouth disease by monitoring the water quality at the survey tube-wells installed near livestock burial sites in order to investigate the effect of the leachate on the quality of nearby underground water and suggest a water pollution level in accordance with water quality evaluation criteria. Methods: To minimize the secondary environmental pollution damage caused by leachate at burial sites of livestock killed by foot-and-mouth disease, this study analyzed the leachate directly discharged from burial sites and installed survey tube-wells within 300 meters of livestock burial sites and investigated water quality as a means to ascertain the environmental effect of the leachate from the burial sites. In accordance with environmental management guidelines on livestock burial sites, this research investigated the water quality in the survey tube-wells in fifty five burial sites in Gangwondo. The elements investigated were $NH_3$-N, $Cl^-$, $NO_3$-N, conductivity, and E. coli. Water quality was monitored from 2011 to 2013. Results: The water quality from the drain pipe at the location of leachate from livestock burial sites showed BOD 37,209 mg/L, COD 8,829 mg/L, $NH_3$-N 3,633 mg/L, and $Cl^-$ 580 mg/L. According to the monitoring results of water quality ($Cl^-$, $NH_3$-N, conductivity) at the survey tube-wells, there was suspicion that 13 out of 55 burial sites discharged leachate, five sites discharged highly concentrated leachate (13%): one in Gangneung, one in Wonju, and three in Cheorwon. Conclusion: It was judged that out of thirteen observation wells which showed a possibility of discharged leachate, three survey tube-wells have established the discharge effect of leachate at burial sites up to recently. Therefore, it is judged that it is necessary to continue monitoring them and devise additional measures.

Numerical simulation of the change in groundwater level due to construction of the Giheung Tunnel (기흥터널 건설에 따른 지하수 변화 수치모델링)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Ki-Seok;Kim, Nam-Hoon;Kim, Gyoo-Bum
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.449-459
    • /
    • 2010
  • We performed numerical simulations of the excavation of an underground structure (the Giheung Tunnel) in order to evaluate the rate of groundwater flow into the structure and to estimate the groundwater level around the structure. The tunnel was constructed in Precambrian bedrock in Gyeonggi Province, South Korea. Geological and electrical resistivity data, as well as hydraulic test data, were used for the numerical modeling. The modeling took into account the strike-slip faults that cross the southern part of Giheung Tunnel, as these structures influence the discharge of groundwater into the tunnel. The transient modeling estimated a groundwater flow rate into the tunnel of $306\;m^3$/day, with a grout efficiency of 40%, yielding good agreement between the calculated change in groundwater level (6.20 m) and that observed (6.30 m) due to tunnel excavation.

Potential repository domain for A-KRS at KURT facility site (KURT 부지 조건에서 A-KRS 입지 영역 도출)

  • Kim, Kyung-Su;Park, Kyung-Woo;Kim, Geon-Young;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.151-159
    • /
    • 2012
  • The potential repository domains for A-KRS (Advanced Korean Reference Disposal System for High Level Wastes) in geological characteristics of KURT (KAERI Underground Research Tunnel) facility site were proposed to develop a repository system design and to perform the safety assessment. The host rock of KURT facility site is one of major Mesozoic plutonic rocks in Korean peninsula, two-mica granite, which was influenced by hydrothermal alteration. The topographical features control the flow lines of surface and groundwater toward south-easterly and all waters discharge to Geum River. Fracture zones distributed in study site are classified into order 2 magnitude and their dominant orientations are N-S and E-W strike. From the geological features and fracture zones, the potential repository domains for A-KRS were determined spatially based on the following conditions: (1) fracture zone must not cross the repository; and (2) the repository must stay away from the fracture zones greater than 50 m. The western region of the fracture zones in the N-S direction with a depth below 200 m from the surface was sufficient for A-KRS repository. Because most of the fracture zones in N-S direction were inclined toward the east, we expected to find a homogeneous rock mass in the western region rather than in the eastern region. The lower left domain of potential domains has more suitable geological and hydrogeological conditions for A-KRS repository.

Numerical simulation of groundwater flow in LILW Repository site:II. Input parameters for Safety Assessment (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 2. 처분 안전성 평가 인자)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Koh, Yong-Kwon;Kim, Geon-Young;Kim, Jin-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2008
  • The numerical simulations for groundwater flow were carried out to support the input parameters for safety assessment in LILW repository site. As the input parameters for safety assessment, the groundwater flux into the underground facilities during construction, flow rate through the disposal silo after closure of disposal silo and flow pathway from the disposal silo to discharge area were analyzed using the 10 cases groundwater flow simulations. From the total 10 numerical simulation results, the statistics of estimated output were similar to among 10 cases. In some cases, the analyzed input parameters were strongly governed by locally existed high permeable fracture zone at radioactive waste disposed depth. Indeed, numerical simulation for well scenario as a human intrusion scenario was carried out using the hydraulically severe case model. Using the results of well scenario, the input parameters for safety assessment were also obtained through the numerical simulation.

  • PDF

Estimation of Groundwater Flow Rate into Jikri Tunnel Using Groundwater Fluctuation Data and Modeling (지하수 변동자료와 모델링을 이용한 직리터널의 지하수 유출량 평가)

  • Lee, Jeong-Hwan;Hamm, Se-Yeong;Cheong, Jae-Yeol;Jeong, Jae-Hyeong;Kim, Nam-Hoon;Kim, Ki-Seok;Jeon, Hang-Tak
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.5
    • /
    • pp.29-40
    • /
    • 2009
  • In general, understanding groundwater flow in fractured bedrock is critical during tunnel and underground cavern construction. In that case, borehole data may be useful to examine groundwater flow properties of the fractured bedrock from pre-excavation until completion stages, yet sufficient borehole data is not often available to acquire. This study evaluated groundwater discharge rate into Jikri tunnel in Gyeonggi province using hydraulic parameters, groundwater level data in the later stage of tunneling, national groundwater monitoring network data, and electrical resistivity survey data. Groundwater flow rate into the tunnel by means of analytical method was estimated $7.12-74.4\;m^3/day/m$ while the groundwater flow rate was determined as $64.8\;m^3/day/m$ by means of numerical modeling. The estimated values provided by the numerical modeling may be more logical than those of the analytical method because the numerical modeling could take into account spatial variation of hydraulic parameters that was not possible by using the analytical method. Transient modeling for a period of one year from the tunnel completion resulted in the recovery of pre-excavation groundwater level.

Evaluation Study of Blast Resistance and Structural Factors in the Explosive Simple Storage by Numerical Analysis (수치해석을 통한 화약류 간이저장소의 방폭성 및 구조인자 평가연구)

  • Jung, Seung-Won;Kim, Jung-Gyu;Kim, Jun-Ha;Kim, Nam-Soo;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.32 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • The design regulations for simple explosive storage in Korea only stipulate standards for the materials and thickness of the wall of the structure because the amount of explosives that can be stored is small. There is concern about secondary damage during an internal explosion in a simple storage facility, and it is necessary to reexamine the current standards. The numerical analysis for the TNT 15 kg explosion inside the simple storage was carried out by setting the factors using the robust experimental design method. The displacement of the structure generated under the same time condition was analyzed, and the contribution was evaluated. The contribution of concrete thickness was the highest, and the contribution of concrete strength and rebar arrangement was lower than that of concrete thickness. The reinforcement diameter contributed extremely little to the displacement. The structural standards of the simple storage that are currently applied are insufficient on blast resistance, and it is necessary to present new design standards. Therefore, the design factor to be applied later analysis and actual experiments were taken into consideration. For the design variables, the thickness of the concrete was 15 cm considering the displacement, the concrete strength was selected as general concrete considering the inlet discharge pressure, the factor with the lowest average displacement was selected for the reinforcement arrangement and the diameter of the reinforcement, the factor with the smallest level was selected in consideration of economic feasibility because the difference in displacement was low.

Review of Policy Direction and Coupled Model Development between Groundwater Recharge Quantity and Climate Change (기후변화 연동 지하수 함양량 산정 모델 개발 및 정책방향 고찰)

  • Lee, Moung-Jin;Lee, Joung-Ho;Jeon, Seong-Woo;Houng, Hyun-Jung
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.157-184
    • /
    • 2010
  • Global climate change is destroying the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. The Intergovernmental Panel on Climate Change (IPCC 2007) makes "changes in rainfall pattern due to climate system changes and consequent shortage of available water resource" a high priority as the weakest part among the effects of human environment caused by future climate changes. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes, and "direct" interactions, being indirectly affected through recharge. Therefore, in order to quantify the effects of climate change on groundwater resources, it is necessary to not only predict the main variables of climate change but to also accurately predict the underground rainfall recharge quantity. In this paper, the authors selected a relevant climate change scenario, In this context, the authors selected A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by period and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model for groundwater recharge, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems associated with how the groundwater resource circulation system should be reflected in future policies pertaining to groundwater resources, it may be urgent to recalculate the groundwater recharge quantity and consequent quantity for using via prediction of climate change in Korea in the future and then reflection of the results. The space-time calculation of changes to the groundwater recharge quantity in the study area may serve as a foundation to present additional measures for the improved management of domestic groundwater resources.

  • PDF

A Study on the Construction method of Stamped earthen wall (판축토성(版築土城) 축조기법(築造技法)의 이해(理解) - 풍납토성(風納土城) 축조기술(築造技術)을 중심(中心)으로 -)

  • Shin, Hee-kweon
    • Korean Journal of Heritage: History & Science
    • /
    • v.47 no.1
    • /
    • pp.102-115
    • /
    • 2014
  • The stamped earth method is a typical ancient engineering technique which consists of in-filling wooden frame with layers of stamped earth or sand. This method has been universally used to construct earthen walls and buildings, etc. The purpose of this article is to understand the construction method and principles of the stamped earthen wall through analysis of various construction techniques of Pungnaptoseong Fortress(Earthen Fortification in Pungnap-dong). First of all, the ground was leveled and the foundations for the construction of the earthen wall were laid. The underground foundation of the earthen walls was usually constructed by digging into the ground and then in-filling this space with layers of mud clay. Occasionally wooden posts or paving stones which may have been used to reinforce the soft ground were driven in. The method of adding layers of stamped earth at an oblique angle to either side of a central wall is the most characteristic feature of Pungnaptoseong Fortress. Even though the traces of fixing posts, boards, and the hardening of earth - all signatures of the stamped earth technique - have not been identified, evidence of a wooden frame has been found. It has also been observed that this section was constructed by including layers of mud clay and organic remains such as leaves and twigs in order to strengthen the adhesiveness of the structures. The outer part of the central wall was constructed by the anti-slope stamped earth technique to protect central wall. In addition a final layer of paved stones was added to the upper part of the wall. These stone layers and the stone wall were constructed in order to prevent the loss of the earthen wall and to discharge and drain water. Meanwhile, the technique of cementing with fire was used to control damp and remove water in stamped earth. It can not be said at present that the stamped earth method has been confirmed as the typical construction method of Korean ancient earthen walls. If we make a comparative study of the evidence of the stamped earth technique at Pungnaptoseong Fortress with other archeological sites, progress will be made in the investigation of the construction method and principles of stamped earthen wall.