• 제목/요약/키워드: underground concrete

검색결과 596건 처리시간 0.025초

균열부 콘크리트의 중성화에 대한 실험적 연구 (An Experimental Study on Carbonation in Cracked Concrete)

  • 권성준;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.655-660
    • /
    • 2002
  • Major deterioration in concrete structures are salt attack and carbonation. Especially severe problems due to carbonation occur in tile concrete structures of city, tunnel, underground structures. Cracks in concrete during service life including early age due to hydration heat and/or shrinkage accelerate the diffusion of concrete so that the deterioration is also accelerated. In this study, carbonation depths of both non-cracked concrete and cracked concrete are evaluated and weight change test and TGA are carried out. Through the tests, a relation between water-cement ratio and carbonation depth is derived and also carbonation increase rate is derived in the function of crack width.

  • PDF

매스콘크리트 벽체에서 콘크리트 응결 특성과 측압과의 관계 (Relation of Concrete Setting Characteristic and Lateral Pressure in Mass Concrete Wall)

  • 박찬규;유재현;백승준;정재홍;진용만
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.935-938
    • /
    • 2001
  • This paper reports the relation of concrete setting characteristic and lateral pressure in mass concrete wall such as side wall of LNG underground storage tank. In order to estimate the lateral pressure, initial setting time of low heat cement concrete with type of mineral admixture was measured for three concrete mixtures(W/P=41.6%) containing limestone powder, fly ash, and slag powder. As a result, the lateral pressure of the concrete containing limestone powder was the smallest than those of other concretes as well as the initial setting time.

  • PDF

Simulating the influence of pore shape on the Brazilian tensile strength of concrete specimens using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.469-479
    • /
    • 2018
  • The Brazilian tensile strength of concrete samples is a key parameter in fracture mechanics since it may significantly change the quality of concrete materials and their mechanical behaviors. It is well known that porosity is one of the most often used physical indices to predict concrete mechanical properties. In the present work the influence of porosity shape on concrete tensile strength characteristics is studied, using a bonded particle model. Firstly numerical model was calibrated by Brazilian experimental results and uniaxial test out puts. Secondly, Brazilian models consisting various pore shapes were simulated and numerically tested at a constant speed of 0.016 mm/s. The results show that pore shape has important effects on the failure pattern. It is shown that the pore shape may play an important role in the cracks initiation and propagation during the loading process which in turn influence on the tensile strength of the concrete samples. It has also been shown that the pore size mainly affects the ratio of uniaxial compressive strength to that of the tensile one in the simulated material samples.

Probabilistic service life of box culvert due to carbonation of concrete cover

  • Woo, Sang-Kyun;Chu, In-Yeop;Lee, Yun;Lee, Byung-Jae
    • Advances in concrete construction
    • /
    • 제12권6호
    • /
    • pp.517-525
    • /
    • 2021
  • More underground structures are increasingly being constructed such as box culverts for electric power transmission, and the life extension of these structures is very important. It is well known that the steel embedded in concrete is usually invulnerable to corrosion because the high alkalinity of the pore solution in concrete generates a thin protective oxide layer on the surface of the steel. Recent observations in the field and experimental evidence have shown that even steel in concrete can be corroded through the carbonation reaction of cover concrete. Carbonation-induced corrosion in concrete may often occur in a high carbon dioxide environment. In this study, the risk of carbonation of underground box culverts in Korea was evaluated by measuring the car¬bonation rate and concrete cover depth in the field. Then, the carbonation-free service life for the cover depth of the steel was calcu¬lated with in situ information and Monte Carlo simulation. Additionally, an accelerated carbonation test for a cracked beam specimen was performed, and the effect of a crack on the service life of a box culvert was numerically investigated with Monte Carlo simulation based on experimental results.

고로슬래그 콘크리트의 투수특성에 관한 실험적 연구 (An Experimental Study on Permeability Characteristics of Blast Furnace Slag Concrete)

  • 백신원;오대영
    • 한국농공학회논문집
    • /
    • 제55권3호
    • /
    • pp.9-12
    • /
    • 2013
  • The pavement is generally used on the highways, local loads, roads for bicycle riding and neighborhood living facility such as parking lot, plaza, park and sports facilities. However, the pavement material that is usually used on the most of roads is impermeable asphalt-concrete and cement-concrete. If the pavement material is impermeable, many problems can be happened on the drainage facilities in the rainy season. Additionally, a lot of rainwater on the pavement surface cannot permeate to the underground and flows to the sewage ditch, stream and river, etc. If a lot of rainwater flows at once, the floods can be out along the streams and rivers. So, underground water can be exhausted. Micro organisms cannot live in the underground. Recently, many studies has been conducted to exploit the permeable concrete that has high performance permeability. However, it is required to develop the permeable concrete which has high strength and durability. In this study, permeable and strength tests were performed to investigate the permeable characteristics of porous concrete according to fine aggregate content and substitution ratio of blast furnace slag. In this test, crushed stones with 10~20 mm and sand with 5~10 mm were used as a coarse aggregate and a fine aggregate respectively. The substitution ratio of blast furnace slag to cement weight is 0 %, 15 %, and 30 %. The ratio of fine aggregate to total aggregate is 0 %, 18 %, and 35 %. As a result, permeability coefficient was decreased according to fine aggregate ratio of total aggregate. Compressive strength was also decreased according to substitution ratio of blast furnace slag.

지하 철근콘크리트 박스구조물의 균열제어 시공기술개발 (Development of Construction Methods for the Crack Control of underground RC Box Structures)

  • 이순환;김영진;김성운;방재원;최용성
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.809-812
    • /
    • 1999
  • This research analyzed the factors for crack generation and proposed the recommended construction methods for the efficient crack control of underground RC box structures under the roadway. The selected main factors were: details of contraction joints, ratio of crack control rebars in longitudinla direction, and placement of flyash concrete. These factors were tested on the actual structures and the significance of each factor was analyzed, The results show that the flyash concrete placement and the inducting minor cracks in a certain direction by adopting contraction joints are practical and efficient methods to control cracks. The significance of crack generating factors increases as the sectional loss of contraction joint spacing increase. It was recommeded that the sectional loss should be higher than 20 percent to maximize the crack generating effects. It was not possible to verify the effect of crack control rebar spacing, but it was estimated that the ratio of crack control rebar should be increased to minimize cracks.

  • PDF

저열 포틀랜드 시멘트를 활용한 일반강도 저발열.자기충전 콘크리트의 지하박스 구조물 현장적용에 관한 연구 (Cast in Place of the Low Heat.Self Consolidation Concrete on Underground RC Box Structure using Low Heat Portland Cement)

  • 하재담;권태훈;유성영;김영우;권태문;안병락
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2009년도 춘계 학술대회 제21권1호
    • /
    • pp.215-216
    • /
    • 2009
  • 최근 품질관리, 소음저감 등의 이유로 자기충전 콘크리트의 적용사례가 증가하고 있어 이에 대처하기 위하여 저열 포틀랜드 시멘트를 활용하여 지하박스구조물에 일반강도에서의 저발열 자기충전 콘크리트를 개발하여 타설하였으며 이에 대한 배합설계 방법과 현장 적용방법 등을 제시하고자 한다.

  • PDF

역수압 작용을 고려한 방수·방식재의 부착강도 시험방법에 관한 연구 (A Study on the Test Methods of Bond Strength in Waterproofing and Anti-corrosion Materials by Reversed Pressure)

  • 김명지;최수영;최성민;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.232-233
    • /
    • 2014
  • Recently, water treatment facility is usually eastablished in underground, and waterproofing and anti-corrosion materials for concrete structures applied water treatment tank is developing in various ways. However, as the limit of research focused on durability improvement of top coating material, it is insufficient to study on the adhesion strength between the concrete surface and primer. Therefore, there is to confirm the adhesion of between concrete surface and the three primers used as anti-corrosion waterproofing materials, and to investigate the properties of adhesion strength according to the condition such as wet codition and water pressure condition of the concrete surface in this study.

  • PDF

터널 콘크리트 라이닝의 구조적 특성평가를 위한 탄성파 기법, MiSA의 개발 (MiSA (Method of Integrated Spectral Analysis) to Evaluate Structural Integrity of Tunnel Concrete Lining)

  • 김기봉;추진호;조성호;조미라
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.49-56
    • /
    • 2001
  • The techniques to make assessment of the structural integrity of underground structures include Infrared thermagraphy, GPR using the reflection of the electromagnetic wave, ultrasonic test, seismic methods using the propagation of elastic wave, and etc These methods have pros and cons in the assessment of the structural integrity in the complex environment of the underground structure, so that a single method alone is not enough to evaluate parameters required for the assessment. In this study, a new seismic method was proposed to improve the existing methods and to provide an additional information like stiffness of concrete. The proposed method combines the advantages of the modified impact-echo test and the SASW method. To verify the validity of the proposed method, a large scale model of a tunnel concrete liner was built and the proposed method was applied to the center of the model and also to the corner of the model which has several distinct reflection boundaries.

  • PDF

콘크리트 지하구조물 누수 처리를 위한 유도배수시스템 (Drainage system for leakage treatment of cement concrete structure in underground)

  • 김동규
    • 한국터널지하공간학회 논문집
    • /
    • 제21권4호
    • /
    • pp.573-585
    • /
    • 2019
  • 본 연구의 목적은 운영 중인 콘크리트 지하구조물에서 발생하는 누수를 유도배수하기 위하여 시공성, 차수 및 유도배수 성능을 향상시킨 유도배수시스템을 제안하는 것이다. 기존 유도배수시스템에서 제기된 유도배수관의 시공성 및 누수를 개선하였다. 개선된 유도배수관을 적용한 유도배수시스템은 시공성, 차수 및 유도배수 성능에 대한 현장평가를 위하여 재래식 콘크리트 라이닝 터널에서 시험 시공되었다. 재령 3주, 6주, 9주, 11주, 14주, 17주 및 23주차에 개선된 유도배수시스템 배면에 약 1,000 ml 이상의 붉은색 물을 주입하여 유도배수시스템의 차수와 유도배수 성능을 평가하였다. 현장 성능평가 실험이 진행된 6개월 동안 터널이 위치한 지역의 일일 평균 온도는 $-12.4{\sim}19.7^{\circ}C$이며 일일 최저 온도는 $-17.2^{\circ}C$이고 일일 최고 온도는 $26.7^{\circ}C$였다. 현장 성능평가 실험이 진행되는 6개월 동안 개선된 유도배수시스템에서는 누수가 발생하지 않았다. 또한 개선된 유도배수관에서도 누수가 발생하지 않았다. 개선된 유도배수시스템은 누수가 발생하는 다양한 콘크리트 지하구조물에서 적용가능하며 계절적 영향도 거의 받지 않는 것으로 판단되었다.