• Title/Summary/Keyword: underground caverns

Search Result 81, Processing Time 0.024 seconds

Hydrogeological Stability Study on the Underground Oil Storage Caverns by Numerical Modeling (수치모델링을 이용한 지하원유비축시설의 수리지질학적 안정성 연구)

  • 김경수;정지곤
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.35-51
    • /
    • 2002
  • This study aims to establish the methodology for design of an optimum water curtain system of the unlined underground oil storage cavern satisfying the requirements of hydrodynamic performance in a volcanic terrain of the south coastal area. For the optimum water curtain system in the storage facility, the general characteristics of groundwater flow system in the site are quantitatively described, i.e. distribution of hydraulic gradients, groundwater inflow rate into the storage caverns, and hydrogeologic influence area of the cavern. In this study, numerical models such as MODFLOW, FracMan/MAFIC and CONNECTFLOW are used for calculating the hydrogeological stability parameters. The design of a horizontal water curtain system requires considering the distance between water curtain and storage cavern, spacing of the water curtain boreholes, and injection pressure. From the numerical simulations at different scales, the optimum water curtain systems satisfying the containment criteria are obtained. The inflow rates into storage caverns estimated by a continuum model ranged from about 120 m$^3$/day during the operation stage to 130~140m$^3$/day during the construction stage, whereas the inflow rates by a fracture network model are 80~175m$^3$/day. The excavation works in the site will generate the excessive decline of groundwater level in a main fracture zone adjacent to the cavern. Therefore, the vertical water curtain system is necessary for sustaining the safe groundwater level in the fracture zone.

Technologies of Underground Thermal Energy Storage (UTES) and Swedish Case for Hot Water (지하 열에너지 저장 기술 및 스웨덴 암반공동내 열수 저장 사례)

  • Park, Doh-Yun;Kim, Hyung-Mok;Ryu, Dong-Woo;Choi, Byung-Hee;SunWoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • Thermal energy storage is defined as the temporary storage of thermal energy at high or low temperatures for later use in need. The energy storage can reduce the time or rate mismatch between energy supply and demand, and thus it plays an important role in conserving energy and improving the efficiency of energy utilization, especially for renewable energy sources which provide energy intermittently. Underground thermal energy storage (UTES) can have additional advantages in energy efficiency thanks to low thermal conductivity and high heat capacity of surrounding rock mass. In this paper, we introduced the technologies of underground thermal energy storage and rock caverns for hot water storage in Sweden.

Underground Space Development and Strategy in Korea (국내 지하공간 개발 및 대책)

  • Shin, Hee-Soon
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.327-336
    • /
    • 2013
  • Approximately 70% of the Korean peninsula is composed of mountains, around 99,274 $km^2$. Even worse, population rate of Korea is the No.3 in the world now. Accordingly, it is necessary to develop the potential underground space actively with the concept of another territory to be utilized. The development of underground space should be considered not a choice but an indispensable issue. Since 1970s, many large-scale underground structures have been constructed like as crude-oil storage bins, liquefied petroleum gas storage caverns, and underground pumped storage powerplants. Also, In urban area, the underground facilities such as subway networks, underground shopping mall, underground pedestrian network, electric power tunnels, and car parking lots have been used extensively. The scale of Yeosu oil and gas underground storage facility and Seoul subway systems are one of the massive scale in the world. Recently, the trend of the development of underground space becomes more diverse and larger scale. The current status of Korean underground space developments and strategy are described in this paper.

Aseismic analysis for large underground structure (대형 지하구조물의 내진해석)

  • Choi, Seung-Ho;Pam, Inn-Joon;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2009
  • The large underground structure under earthquake is affected more by soil dynamic characteristic and volume of structure than by structural dynamic characteristic itself. Therefore, it is the purpose of research that the aseismic analysis for caverns including various aseismic analysis factors (rock quality-Q value, soil dynamic characteristic, shape ratio $&$ volume, underground structural dynamic characteristic, and aseismic level) are applied by using the numerical analysis program (SAUS; seismic analysis of underground structures). The result of research is stated that maximum strain, maximum moment, and maximum shear are not sensitive with respect to shape ratio. However those values are sensitive with respect to Q value, volume of underground structure and aseismic level. Based on the results of this research, the assessment for the influence factors of aseismic analysis for large underground structure could be possible.

Groundwater Flow Characterization in the Vicinity of the Underground Caverns by Groundwater Level Changes (지하수위 변화에 따른 지하공동 주변의 지하수 유동특성 해석)

  • 강재기;양형식;김경수;김천수
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.465-475
    • /
    • 2003
  • Groundwater inflow into the caverns constructed in fractured rock mass was simulated by numerical modeling, NAPSAC (DFN, discrete fracture network model) and NAMMU (CPM, continuous porous media model), a finite-element software package for groundwater flow in 3D fractured media developed by AEA Technology, UK. The input parameters for modeling were determined on surface fracture survey, core logging and single hole hydraulic test data. In order to predict the groundwater inflow more accurately, the anisotropic hydraulic conductivity was considered. The anisotropic hydraulic conductivities were calculated from the fracture network properties. With a minor adjustment during model calibration, the numerical modeling is able to reproduce reasonably groundwater inflows into cavern and the travel length and times to the ground surface along the flow paths in the normal, dry and rainy seasons.

A Study on the Support System of Large Caverns Under High Initial Stress (과지압 하에 있는 대규모 지하공동의 지보 시스템에 관한 연구)

  • 박연준;유광호;최영태;김재용
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.154-166
    • /
    • 2004
  • A numerical stability analysis was conducted on the large oil storage caverns excavated in a rock mass under high initial horizonal stress. The behaviors of the surrounding rock mass, rockbolts, and shotcrete were analyzedr and stability of the support members were assessed. For a proper support system design, the effect of the modelling technique, cavern shape and rockbolt length on the stability of the cavern was investigated. Results show that installation timing of supports and the change in cavern shape due to stepwise excavation affect the stress induced in support members. Also found was desperate need for a numerical technique which can properly reflect the behavior of the steel fiber reinforced shotcrete.

A Case Study of Correlation between Inflows and Geological Structures around Underground Caverns (지하 유류저장 공동의 지질구조와 공동누수량 상호관계에 관한 사례)

  • 전한석
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.79-93
    • /
    • 2000
  • When caverns are excavated, it is very important to understand the distribution and charateristics of geological structures because the structures have an significant effect on grouting, rock reinforcement, and groundwater flow, etc. The main water bearing fractures have an orientation of N50~60W and these fractures are known as tension fractures. Their orientation coincides with a long elliptical axis ofpumping test, and they cross the tension fractures of N10~30E. They have typical fracture systems ofrhombic type in this area.

  • PDF

Investigation and Design of Underground Cavern for Oil Storage in Korea (국내원유비축지하공동의 조사 및 설계)

  • Kim Chee Whan;Lee Seok Chun
    • Explosives and Blasting
    • /
    • v.12 no.1
    • /
    • pp.32-38
    • /
    • 1994
  • This study Is to summarize the contents for the investigation and design of the construction for oil storage. Since underground caverns are large scale, in their construction one should consider the mechanical stability of cave·rns and the economic view of construction. On the basis of them, cavern's section and layout were determined and water curtains were designed to maintain hydraulic equilibrium so that gases were sealed tightly. Also the supporting criteria for rock bolt and stotcrete were determined by means of the classification of rock masses and the results of finite element method. The criteria of grouting reinforcement were presented according to the results of injection test in the pilot holes of working face.

  • PDF

Determination of Boil-Off gas Ratio for the Design of Underground LNG Storage System in Rock Cavern (암반동굴식 지하 LNG 저장 시스템 설계를 위한 기화율의 산정)

  • Chung, So-Keul;Lee, Hee-Suk;Jeong, Woo-Cheol;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.17 no.1 s.66
    • /
    • pp.56-65
    • /
    • 2007
  • A new underground LNG storage concept in the rock mass has been developed by combining underground cavern construction and new ice-ring harrier technologies with the conventional cryogenic insulation system. Technical feasibility of the storage system has been verified through construction and operation of the pilot storage cavern and a full-scale project is expected to start in the near future. One of the most important issues in the LNG storage system is the operational efficiency of the storage to minimize heat loss during a long period of operation due to the cryogenic heat transfer. This paper presents several important results of heat transfer and coupled hydro-thermal analyses by a finite element code Temp/W and Seep/W. A series of heat transfer analyses for full-scale caverns were performed to determine design parameters such as boil-off gas ratio (BOR), insulation thickness and pillar width. The result of the coupled hydro-mechanical analysis showed that BOR for underground storage system remains at about 0.04 %/day during the early stage of the operation. This value could be even much lower when the discontinuities in the rock masses are taken into consideration.

A Study on the Shape and Size Effects on the Stability of Underground Openings (지하공동의 형상과 규모가 공동의 안정성에 미치는 영향 연구)

  • 박상찬;문현구
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.93-108
    • /
    • 1998
  • In this study, the analytic solutions and numerical methods were used to estimate the shape and size effects on the stability of underground openings. The stability of underground openings was evaluated by scrutinizing the effects of the rock mass quality, the state of in-situ stresses and the lateral earth pressure coefficient on the displacement, the stress concentration and the plastic region developed in the vicinity of the openings. The analytic solutions have shown that the stress concentration factor is inversely proportional to the radius of curvature of openings. Through parametric study on the various shapes and sizes of underground openings the characteristics of the controlling factors concerned with the stability were analyzed. Then, the study was extended to the horseshoe-shaped openings commonly used for under ground storage. Through the extended study the effects of the stress ratio and the height-towidth ratio of openings on the maximum displacement and plastic region developed around the openings were estimated. The results have shorn that the height-to-width ratio of domestic storage caverns can be increased economically without stability problem, as far as the lateral earth pressure coefficient is appropriate.

  • PDF