• 제목/요약/키워드: underground Structures

검색결과 974건 처리시간 0.025초

지하철 박스 구조물의 수화열 해석 및 온도균열 제어 방안 (Construction Techniques for Crack Control of Underground Box Structures)

  • 차수원
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.153-159
    • /
    • 2001
  • Recently, the underground reinforced concrete(RC) box structures have been increasingly built in Korea. In such structures, the heat of hydration may cause serious cracking problems. The RC box structures are classified in this category that needs much attention to control the hydration heat during construction, which causes the restraining effects on the boundaries. The purpose of the present study is to develop the rational construction method to control the thermal cracking problem of the box structures. In this study, the causes and mechanism of thermal cracking according to construction stages in the RC box structures are thoroughly analyzed. The major influencing variables are studied through the finite element analysis which affect the thermal cracking of RC box structures. The research results of the present study can be efficiently used for the control of cracking of box structures during construction stages.

  • PDF

ASPHALT MASTIC 도막 및 SHEET에 의한 이중방수공법 (Double Waterproof Method of Asphalt Mastic Membrane and Sheet on Concrete Structures.)

  • 임채중;배문옥
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.845-852
    • /
    • 1999
  • Nealy, A large amount of underground spaces is constructed the form of deep basement in construction work. During their service life, Underground spaces have been keeping to dry enough for habitable or utilitarian used. This method is of use for waterproofness in underground spaces.

  • PDF

Seismic performance of reinforced concrete shear wall buildings with underground stories

  • Saad, George;Najjar, Shadi;Saddik, Freddy
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.965-988
    • /
    • 2016
  • This paper investigates the seismic behavior of reinforced concrete shear wall buildings with multiple underground stories. A base-case where the buildings are modeled with a fixed condition at ground level is adopted, and then the number of basements is incrementally increased to evaluate changes in performance. Two subsurface site conditions, corresponding to very dense sands and medium dense sands, are used for the analysis. In addition, three ground shaking levels are used in the study. Results of the study indicated that while the common design practice of cropping the structure at the ground surface leads to conservative estimation of the base shear for taller and less rigid structures; it results in unpredicted and nonconservative trends for shorter and stiffer structures.

열차하중에 의한 지중구조물의 소음진동감소를 위한 차단벽사용에 관한 연구 (A Study on Using Infilled Trenches for Vibration Reduction of Underground Structures by Train Loading)

  • 권기준;정대열;고철수;김용길;황성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.724-729
    • /
    • 2003
  • Installing vibration isolation in structures, such as structures adjacent to subways, may be delicatebecause of the proximity with the vibration source or because of the wave propagation path. This paper discusses on method that install isolation Pads on underground walls as a part of the vibration mitigation system, and also on its efficiency, The proposed method is proven to affect significantly the distribution of acceleration in the neighborhood of the structure and to reduce efficiently the maximum amplitude of the vibration. It is also seen that installing isolating pads until the depth of the foundations and deeper is more efficient than installing such device separately from the structure. This Study being limited to the comparison of installation methods, further Studies considering the thickness, stiffness and other parameters should be required.

  • PDF

Deformation analyses during subway shield excavation considering stiffness influences of underground structures

  • Zhang, Zhi-guo;Zhao, Qi-hua;Zhang, Meng-xi
    • Geomechanics and Engineering
    • /
    • 제11권1호
    • /
    • pp.117-139
    • /
    • 2016
  • Previous studies for soil movements induced by tunneling have primarily focused on the free soil displacements. However, the stiffness of existing structures is expected to alter tunneling-induced ground movements, the sheltering influences for underground structures should be included. Furthermore, minimal attention has been given to the settings for the shield machine's operation parameters during the process of tunnels crossing above and below existing tunnels. Based on the Shanghai railway project, the soil movements induced by an earth pressure balance (EPB) shield considering the sheltering effects of existing tunnels are presented by the simplified theoretical method, the three-dimensional finite element (3D FE) simulation method, and the in-situ monitoring method. The deformation prediction of existing tunnels during complex traversing process is also presented. In addition, the deformation controlling safety measurements are carried out simultaneously to obtain the settings for the shield propulsion parameters, including earth pressure for cutting open, synchronized grouting, propulsion speed, and cutter head torque. It appears that the sheltering effects of underground structures have a great influence on ground movements caused by tunneling. The error obtained by the previous simplified methods based on the free soil displacements cannot be dismissed when encountering many existing structures.

Investigation the effect of dynamic loading on the deformation of ancient man-made underground spaces

  • Rezaee, Hooman;Noorian-Bidgoli, Majid
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.277-287
    • /
    • 2022
  • The ancient underground cities are a collection of self-supporting spaces that have been manually excavated in the soil or rock in the past. Because these structures have a very high cultural value due to their age, the study of their stability under the influence of natural hazards, such as earthquakes, is very important. In this research, while introducing the underground city of Ouyi Nushabad located in the center of Iran as one of the largest man-made underground cities of the old world, the analysis of dynamic stability is performed. For this purpose, the dynamic stress-displacement analysis has been performed through numerical modeling using the finite element software PLAXIS. At this stage, by simulating the Khorgo earthquake as one of the large-scale earthquakes that occurred in Iran, with a magnitude of 6.9 on the Richter scale, dynamic analysis by time history method has been performed on three selected sections of underground spaces. This study shows that the maximum amount of horizontal and vertical dynamic displacement is 12.9 cm and 17.7 cm, respectively, which was obtained in section 2. The comparison of the results shows that by increasing the cross-sectional area of the excavation, especially the distance between the roof and the floor, in addition to increasing the amount of horizontal and vertical dynamic displacement, the obtained maximum acceleration is intensified compared to the mapping acceleration applied to the model floor. Therefore, preventive actions should be taken to stabilize the excavations in order to prevent damage caused by a possible earthquake.

Dynamic shear modulus and damping ratio of saturated soft clay under the seismic loading

  • Zhen-Dong Cui;Long-Ji Zhang;Zhi-Xiang Zhan
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.411-426
    • /
    • 2023
  • Soft clay is widely distributed in the southeast coastal areas of China. Many large underground structures, such as subway stations and underground pipe corridors, are shallow buried in the soft clay foundation, so the dynamic characteristics of the soft clay must be considered to the seismic design of underground structures. In this paper, the dynamic characteristics of saturated soft clay in Shanghai under the bidirectional excitation for earthquake loading are studied by dynamic triaxial tests, comparing the backbone curve and hysteretic curve of the saturated soft clay under different confining pressures with those under different vibration frequencies. Considering the coupling effects of the confining pressure and the vibration frequency, a fitting model of the maximum dynamic shear modulus was proposed by the multiple linear regression method. The M-D model was used to fit the variations of the dynamic shear modulus ratio with the shear strain. Based on the Chen model and the Park model, the effects of the consolidation confining pressure and the vibration frequency on the damping ratio were studied. The results can provide a reference to the earthquake prevention and disaster reduction in soft clay area.

터널 화재로 인한 콘크리트 세그먼트의 손상특성 규명 (Fire-induced damage on Shield TBM concrete segment)

  • 최순욱;장수호;이규필;배규진
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.423-430
    • /
    • 2005
  • Fire accidents in underground space may bring much loss of lives as well as properties and result in catastrophic disasters. This study aimed to manufacture the high-temperature furnace capable of simulating fire scenarios (RABT and RWS) and carry out the preliminary fire tests to evaluate fire-induced damage in underground structures. Specimens used in the fire tests were the concrete segments generally used in shield TBM tunnels. The simulated fire scenario was set to the RABT curve that is the most representative fire scenario in underground space. From the fire tests, the spalling was estimated to reach approximately 20cm from the surface exposed to fire. In addition, from the observation of core specimens obtained after fire tests, the deteriorated zone of unspalled specimens amounted to approximately 10cm from the surface of spalling.

  • PDF

구조물 내구성 향상을 위한 방수품질 관련 통합정보시스템 활용방안에 관한 연구 (Application Method of Integrated Information System on waterproofing Quality for Improving Structure Durability)

  • 강효진;안기원;김병일;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.339-340
    • /
    • 2018
  • Contemporary concrete structures make use of underground spaces as parking lots and other comfort facilities for efficiency purposes. As underground environmental conditions are in constant exposure to degradation factors from the environment such as groundwater, hydraulic and soil pressure, structural movement and settlement, structural defects in the form of leakage occur. Current maintenance regulations and regimes are unable to respond to this field, as degradation mechanisms in underground environments are still unclear. In this regard, this study proposes the utilization of integrated information sharing system that can provide various technical information for construction designs to prevent leakages in underground concrete structures.

  • PDF

방식사의 지하 전력시설용 되메움재 활용에 관한 연구 (A Study on the Utilization of Waste Foundry Sand as Backfill Material for Underground Electric Utility Systems)

  • 이대수;홍성연;김경열
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.665-672
    • /
    • 2002
  • In this paper, the utilization of waste foundry sand produced in the molding process is studied as a backfill material for underground electric utility systems such as concrete box structures and pipe lines for power supply. The physical, chemical and thermal properties for waste foundry sand are investigated for mechanical stability, environmental hazard and power transmission capacity. Also its properties are compared with the natural river sand. The test results show that waste foundry sand can be utilized for underground concrete box structures as a backfill material; however, it can not be applied to underground pipe lines due to high thermal resistivity or low power transmission capacity.

  • PDF