• Title/Summary/Keyword: underdosing

Search Result 8, Processing Time 0.026 seconds

The Influence of Air Cavity on Interface Doses for Photon Beams (X선치료 조사야 내 공동의 존재에 따른 선량분포의 측정)

  • Chung Se Young;Kim Young Bum;Kwon Young Ho;Kim You Hyun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.10 no.1
    • /
    • pp.69-77
    • /
    • 1998
  • When a high energy photon beam is used to treat lesions located in the upper respiratory air passages or in maxillary sinus, the beams often must traverse an air cavity before it reaches the lesion. Because of this traversal of air, it is not clear that the surface layers of the lesion forming the air-tumor tissue interface will be in a state of near electronic equilibrium; if they are not, underdosing of these layers could result. Although dose corrections at large distances beyond an air cavity are accountable by attenuation differences, perturbations at air-tissue interfaces are complex to measure or calculate. This problem has been investigated for 4MV and 10MV X-ray beams which are becoming widely available for radiotherapy with linear accelerator. Markus chamber was used for measurement with variouse air cavity geometries in X-ray beams. Underdosing effects occur at both the distal and proximal air cavity interface. The magnitude depended on geometry, energy, field sizes and distance from the air-tissue interfaces. As the cavity thickness increased, the central axis dose at the distal interface decreased. Increasing field size remedied the underdosing, as did the introduction of lateral walls. Fellowing a $20{\times}2{\times}2\;cm^3$\;air\;cavity,\;4{\times}4\;cm\;field\;there\;was\;an\;11.5\%\;and\;13\%\;underdose\;at\;the\;distal\;interface,\;while\;a\;20{\times}20{\times}2\;cm^3\;air\;cavity\;yielded\;a\;24\%\;and\;29\%$ loss for the 4MV and 10MV beams, respectively. The losses were slightly larger for the 10MV beams. The measurements reported here can be used to guide the development of new calculation models under non-equilibrium conditions. This situation is of clinical concern when lesions such as larynx and maxillary carcinoma beyond air cavities are irradiated.

  • PDF

Air Cavity Effects on the Absorbed Dose for 4-, 6- and 10-MV X-ray Beams : Larynx Model (4-, 6-, 10-MV X-선원에서 공기동이 흡수선량에 미치는 효과 : 후두모형)

  • Kim Chang-Seon;Yang Dae-Sik;Kim Chul-Yong;Choi Myung-Sun
    • Radiation Oncology Journal
    • /
    • v.15 no.4
    • /
    • pp.393-402
    • /
    • 1997
  • Purpose : When an x-ray beam of small field size is irradiated to target area containing an air cavity, such as larynx, the underdosing effect is observed in the region near the interfaces of air and soft tissue. With a larynx model, air cavity embedded in tissue-equivalent material, this study is intonded for examining Parameters, such as beam quality, field size, and cavity size, to affect the dose distribution near the air cavity. Materials and Methods : Three x-rar beams, 4-, 6- and 10-MV, were employed to Perform a measurement using a 2cm $(width){\times}L$ (length in cm, one side of x-ray field used 2cm (height) air cavity in the simulated larynx. A thin window parallel-plate chamber connected to an electrometer was used for a dosimetry system. A ratio of the dose at various distances from the cavity-tissue interface to the dose at the same points in a homogeneous Phantom (ebservedlexpected ratio, O/E) normalized buildup curves, and ratio of distal surface dose to dose at the maximum buildup depth were examined for various field sizes. Measurement for cavity size effect was performed by varying the height (Z) of the air cavity with the width kept constant for several field sizes. Results : No underdosing effect for 4-MV beam for fields larger than $5cm\times5cm$ was found For both 6- and 10-MV beams, the underdosing portion of the larynx at the distal surface was seen to occur for small fields, $4cm\times4cm\;and\;5cm\times5cm$. The underdosed tissue was increased in its volume with beam energy even for similar surface doses. The relative distal surface dose to maximum dose was changed to 0.99 from 0.95, 0.92, and 0.91 for 4-, 6-, and 10-MV, respectively, with increasing field size, $4cm\times4cm\;to\;8cm\times8cm$, For 6- and 10-MV beams, the dose at the surface of the cavity is measured less than the predicted by about two and three percent. respectively. but decrease was found for 4-MV beam for $5cm\times5cm$ field. For the $4cm\timesL\timesZ$ (height in cm). varying depth from 0.0 to 4.8cm, cavity, O/E> 1.0 was observed regardless of the cavity size for any field larger than about $8cm\times8cm$. Conclusion : The magnitude of underdosing depends on beam energy, field size. and cavity size for the larynx model. Based on the result of the study. caution must be used when a small field of a high quality x-ray beam is irradiated to regions including air cavities. and especially the region where the tumor extends to the surface. Low quality beam. such as. 4-MV x-ray, and larger fields can be used preferably to reduce the risk of underdosing, local failure. In the case of high quality beams such as 6- and 10-MV x-rays, however. an additional boost field is recommended to add for the compensation of the underdosing region when a typically used treatment field. $8cm\times8cm$, is employed.

  • PDF

Dosimetric Impact of Ti Mesh on Proton Beam Therapy

  • Cho, Shinhaeng;Goh, Youngmoon;Kim, Chankyu;Kim, Haksoo;Jeong, Jong Hwi;Lim, Young Kyung;Lee, Se Byeong;Shin, Dongho
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.144-148
    • /
    • 2017
  • When a high density metallic implant is placed in the path of the proton beam, spatial heterogeneity can be caused due to artifacts in three dimensional (3D) computed tomography (CT) scans. These artifacts result in range uncertainty in dose calculation in treatment planning system (TPS). And this uncertainty may cause significant underdosing to the target volume or overdosing to normal tissue beyond the target. In clinical cases, metal implants must be placed in the beam path in order to preserve organ at risk (OARs) and increase target coverage for tumors. So we should introduce Ti-mesh. In this paper, we measured the lateral dose profile for proton beam using an EBT3 film to confirm dosimetric impact of Ti-mesh when the Ti-mesh plate was placed in the proton beam pathway. The effect of Ti-mesh on the proton beam was investigated by comparing the lateral dose profile calculated from TPS with the film-measured value under the same conditions.

The Measurement of Dose Distribution in the Presence of Air Cavity and Underdosing Effect Result from Lack of Electronic Equilibrium (조사면 내 공동의 존재에 따른 선량분포의 변화측정)

  • Cho, Jung-Hee
    • Journal of radiological science and technology
    • /
    • v.19 no.1
    • /
    • pp.81-87
    • /
    • 1996
  • When high energy photon beam is incident upon an air cavity interface the effect of ionization build-up observed. This phenomenon is resulting from the surface layers of the lesions are significant deficiency of electrons reaching the layers because of the replacement of solid scattering material by the air cavity, that is lack of electronic equilibrium. Measurement have been made in an acrylic phantom with a parallel plate chamber and high energy Photon beams, CO-60, 4MV, 6MV and 10MV X-rays have been investigated. The result of our study show that a significant effect was measured and was determined to be very dependent on field size, air cavity dimension and photon energy. The reductions were much larger for 10MV beam, underdosage at the interface was 12, 12.2, 16.9 and 20.6% for the CO-60, 4 MV, 6MV and 10MV, respectively. It was found that this non-equilibrium effect at the interface is more severe for the higher energy beams than that of lower energy beams and the larger cavity dimensions it is, the larger beam reductions we have. This problem is of clinical concern when lesions such as carcinoma beyond air cavities are irradiated, such as larynx, glottic and the patients with maxillectomy and ethmoidectomy and so forth.

  • PDF

Effect of coagulation conditions on ultrafiltration for wastewater effluent

  • Maeng, Sung Kyu;Timmes, Thomas C.;Kim, Hyun-Chul
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.185-199
    • /
    • 2017
  • Low-pressure membrane filtration is increasingly used for tertiary treatment of wastewater effluent organic matter (EfOM), mainly comprising organic base/neutral compounds. In-line coagulation with underdosing, charge neutralization, and sweep floc conditions prior to ultrafiltration (UF) was studied to determine removals of the EfOM components and consequent reduction of fouling using polyethersulfone membranes. Coagulation and UF substantially reduced fouling for all coagulation conditions while removing from 7 to 38% of EfOM organic acids. From 7 to 16% of EfOM organic base/neutrals were removed at neutral pH but there was no significant removal for slightly acid coagulation conditions even though fouling was substantially reduced. Sweep floc produced the lowest resistance to filtration but may be inappropriate for in-line use due to the large added volume of solids. Charge-neutralization resulted in poor recovery of the initial flux with hydraulic cleaning. Under-dosing paralleled sweep floc in reducing hydraulic resistance to filtration (for sub-critical flux) and the initial flux was also easily recovered with hydraulic cleaning. Hydrophobic and hydrophilic base/neutrals were identified on the fouled membranes but as previously reported the extent of fouling was not correlated with accumulation of organic base/neutrals.

The Measurement of Dose Distribution in the Presence of Air Cavity and Underdosing Effect Result from Lack of Electronic Equilibrium (조사면내 공동의 존재에 따른 선량분포의 변화측정)

  • Jo, Jeong-Hui;Bang, Dong-Wan;Park, Jae-Il
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.8 no.1
    • /
    • pp.75-81
    • /
    • 1996
  • When high energy photon beam is incident upon an air cavity interface the effect of ionization build-up observed . This phenomenon is resulting from the surface layers of the lesions are significant deficiency of electrons reaching the layers because of the replacement, of solid scattering material by the air cavity, that is lack of electronic equilibrium. Measurement have been made in an acrylic phantom with a parallel plate chamber and high energy photon beams, CO-60, 4MV, 6MV and 10MV X-rays have been investigated. The result of our study show that a significant effect was measured and was determined to be very dependent on field size, air cavity dimension and photon energy. The reductions were much larger for 10MV beam, underdosage at the interface was 12, 12.2, 16.9 and $20.6\%$ for the CO-60, 4MV, 6MV and 10MV, respectively. It was found that this non-equilibrium effect at the interface is more severe for the higher energy beams than that of lower energy beams and the larger cavity dimensions the larger beam reductions occur. This problem is of clinical concern when lesions such as carcinoma beyond air cavities are irradiated, such as larynx, glottic and the patients with maxillectomy and ethmoidectomy and so forth.

  • PDF

Evaluation of Electron Boost Fields based on Surgical Clips and Operative Scars in Definitive Breast Irradiation (유방보존술 후 방사선치료에서 수술 흉터와 삽입된 클립을 이용한 전자설 추가 방사선 조사야 평가)

  • Lee, Re-Na;Chung, Eun-Ah;Lee, Ji-Hye;Suh, Hyun-Suk
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.236-242
    • /
    • 2005
  • Purpose: To evaluate the role of surgical clips and scars in determining electron boost field for early stage breast cancer undergoing conserving surgery and postoperative radiotherapy and to provide an optimal method in drawing the boost field. Materials and Methods: Twenty patients who had $4{\sim}7$ surgical clips in the excision cavity were selected for this study. The depth informations were obtained to determine electron energy by measuring the distance from the skin to chest wall (SCD) and to the clip implanted in the most posterior area of tumor bed. Three different electron fields were outlined on a simulation film. The radiological tumor bed was determined by connecting all the clips implanted during surgery Clinical field (CF) was drawn by adding 3 cm margin around surgical scar. Surgical field (SF) was drawn by adding 2 cm margin around surgical clips and an Ideal field (IF) was outlined by adding 2 cm margin around both scar and clips. These fields were digitized into our planning system to measure the area of each separate field. The areas of the three different electron boost fields were compared. Finally, surgical clips were contoured on axial CT images and dose volume histogram was plotted to investigate 3-dimensional coverage of the clips. Results : The average depth difference between SCD and the maximal clip location was $0.7{\pm}0.55cm$. Greater difference of 5 mm or more was seen in 12 patients. The average shift between the borders of scar and clips were 1.7 1.2, 1.2, and 0.9 cm in superior, inferior, medial, and lateral directions, respectively. The area of the CF was larger than SF and IF in 6y20 patients. In 15/20 patients, the area difference between SF and if was less than 5%. One to three clips were seen outside the CF in 15/20 patients. In addition, dosimetrically inadequate coverage of clips (less than 80% of prescribed dose) were observed in 17/20 patients when CF was used as the boost field. Conclusion: The electron field determined from clinical scar underestimates the tumor bed in superior-inferior direction significantly and thereby underdosing the tissue at risk. The electron field obtained from surgical clips alone dose not cover the entire scar properly As a consequence, our technique, which combines the surgical clips and clinical scars in determining electron boost field, was proved to be effective in minimizing the geographical miss as well as normal tissue complications.