• Title/Summary/Keyword: underachieved student in mathematics

Search Result 1, Processing Time 0.02 seconds

Development and application of the program for students with under-achievement of math in high school - On the case of ADDIE model - (고등학교 수학 학습부진학생을 위한 프로그램 개발 및 적용 -ADDIE 모형 적용 사례-)

  • Oh, Taek-Keun
    • The Mathematical Education
    • /
    • v.57 no.4
    • /
    • pp.329-352
    • /
    • 2018
  • This study analyzed each process of demand analysis(A), design(D), development(D), implementation(I) and evaluation(E) of the program to support mathematics learning of students with under-achievement of math in high school. To analyze the demand, a survey was conducted on 235 high school math teachers and 334 high school students who were under-achieved in mathematics. To design and develope the program, this study linked middle school math to high school math so that the students with poor math learning could easily participate in mathematics learning. The programs developed in this study were implemented in three high schools, where separate classes were organized and run for students with poor math learning. The evaluation of the programs developed in this study was done in two ways. One was a quantitative evaluation conducted by five experts, and the other was a qualitative evaluation conducted through interviews with teachers and students participating in the program. This study found that students with poor mathematics learning were more motivated to learn, started to do mathematics, and encouraged to be confident when using learning materials that included easy problems and detailed solutions that they could solve themselves. From these results, the following three implications can be derived in developing a program to support students who are experiencing poor mathematics learning in high school. First, we should develop learning materials that link middle school mathematics to high school mathematics so that students can supplement middle school mathematics related to high school mathematics. Second, we need to develop learning materials that include detailed solutions to basic examples and include homogeneous problems that can be solved while looking at the basic example's solution process. Third, we should avoid the challenge of asking students who are under-achieving to respond too openly.