• Title/Summary/Keyword: under-tension

Search Result 1,384, Processing Time 0.033 seconds

Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills (열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어)

  • Hwang, I.C.;Park, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF

Investigating the negative tension stiffening effect of reinforced concrete

  • Zanuy, Carlos
    • Structural Engineering and Mechanics
    • /
    • v.34 no.2
    • /
    • pp.189-211
    • /
    • 2010
  • The behaviour of a reinforced concrete tension member is governed by the contribution of concrete between cracks, tension stiffening effect. Under highly repeated loading, this contribution is progressively reduced and the member response approximates that given by the fully cracked member. When focusing on the unloaded state, experiments show deformations larger than those of the naked reinforcement. This has been referred to as negative tension stiffening and is due to the fact that concrete carries compressive stresses along the crack spacing, even thought the tie is subjected to an external tensile force. In this paper a cycle-dependent approach is presented to reproduce the behaviour of the axially loaded tension member, paying attention to the negative tension stiffening contribution. The interaction of cyclic bond degradation and time-dependent effects of concrete is investigated. Finally, some practical diagrams are given to account for the negative tension stiffening effect in reinforced concrete elements.

An Experimental Study on Post-Cracking Tension Behavior of Steel Fiber Reinforced Concrete -Focused on Tension Stiffening Effect of Steel Fiber Reinforced Concrete- (강섬유보강콘크리트의 균열 이후의 인장거동에관한 실험적 연구 -강섬유보강콘크리트의 인장강성 증대효과를 중심으로-)

  • 서상교
    • Magazine of the Korea Concrete Institute
    • /
    • v.3 no.1
    • /
    • pp.79-85
    • /
    • 1991
  • This paper aims at experimentally investigating the relationship between tensile load and average strain in the tension zone of SFRC beam. Also, it is attempted to find post cracking tension behavior of SFRC under tensile loading condition. The tension stiffening test is conducted on the long prizm of SFRC which embeds reinforcing bar in both ends of member. From this study, an empirical equation which represents the tension stiffening effect(i.e.effect of increasing tensile-~3trengthening contnbuted by SFRC when the reinforcing bar embeded in the SFRC member is under tensile loading condition) as a function of the average strain is presented .

Relation of Dynamic Changes in Interfacial Tension to Protein Destabilization upon Emulsification

  • Sah, Hong-Kee;Choi, Soo-Kyoung;Choi, Han-Gon;Yong, Chul-Soon
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.381-386
    • /
    • 2002
  • The objective of this study was to link conformational changes of proteins at a water/methylene chloride interface to their destabilization upon emulsification. When 4 aqueous protein solutions (bovine serum albumin, $\beta$-lactoglobulin, ovalbumin, or ribonuclease) were emulsified in methylene chloride, considerable proportions of all the proteins became water insoluble aggregates. There were also noticeable changes in the compositions of their water-soluble species. A series of water/methylene chloride interfacial reactions upon the proteins was considered a major cause of the phenomena observed. Based on this supposition, the interfacial tension was determined by a Kruss DVT-10 drop volume tensiometer under various experimental conditions. It substantiated that the interfacial tension was high enough to cause the adsorption of all the proteins. Under our experimental conditions, their presence in the aqueous phase resulted in reductions of the interfacial tension by the degrees of 8.5 - 17.1 mN $m^{-1}$. In addition, dynamic changes in the interfacial tension were monitored to compare relative rates at which the adsorbed proteins underwent conformational, structural rearrangements at the interface. Such information helped make a prediction about how easily proteins would denature and aggregate during emulsification. Our study indicated that emulsifying aqueous protein solutions in organic solvents should be handled with care, due to adverse interfacial effects.

Influence of high-cycle fatigue on the tension stiffening behavior of flexural reinforced lightweight aggregate concrete beams

  • Chen, How-Ji;Liu, Te-Hung;Tang, Chao-Wei;Tsai, Wen-Po
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.847-866
    • /
    • 2011
  • The objective of this study was to experimentally investigate the bond-related tension stiffening behavior of flexural reinforced concrete (RC) beams made with lightweight aggregate concrete (LWAC) under various high-cycle fatigue loading conditions. Based on strain measurements of tensile steel in the RC beams, fatigue-induced degradation of tension stiffening effects was evaluated and was, compared to reinforced normal weight concrete (NWC) beams with equal concrete compressive strengths (40 MPa). According to applied load-mean steel strain relationships, the mean steel strain that developed under loading cycles was divided into elastic and plastic strain components. The experimental results showed that, in the high-cycle fatigue regime, the tension stiffening behavior of LWAC beams was different from that of NWC beams; LWAC beams had a lesser reduction in tension stiffening due to a better bond between steel and concrete. This was reflected in the stability of the elastic mean steel strains and in the higher degree of local plasticity that developed at the primary flexural cracks.

Analysis of Deformation and Residual Curvature of Steel Sheets in Strip Process Lines (박강판 제조공정에서의 소재 굽힘변형과 잔류만곡 발생 해석)

  • 박기철;전영우;정기조
    • Transactions of Materials Processing
    • /
    • v.6 no.2
    • /
    • pp.118-135
    • /
    • 1997
  • In order to analyze the deformation and residual curvature of steel sheets in the strip processing lines, a program for calculating curvature and work hardening of sheet was developed. Strip deformation caused by repeated bending under tension in the process lines was analyzed on the basis of the incremental-plasticity theory with the mixed hardenting model for the purpose of predicting the strip shape and the yield stress change. The developed calculation program was applied to predict curl and gutter of sheets within a 10% difference. The yield stress increment was also predicted with the similar accuracy. Application of the model to tension legvelling process showed that gutter could be controlled by intermesh and elongation. The yield stress increment in the electro-galvanizing line calculated by the developed program was found to be dependent on the yield strength, the applied tension and the diameter of the smallest roll.

  • PDF

Suppression of tension variations in hydro-pneumatic riser tensioner by using force compensation control

  • Kang, Hooi-Siang;Kim, Moo-Hyun;Bhat Aramanadka, Shankar S.;Kang, Heon-Yong;Lee, Kee-Quen
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.225-246
    • /
    • 2017
  • Excessive dynamic-tension variations on the top-tensioned risers (TTRs) deteriorate the structural integrity and cause potential safety hazards. This phenomenon has become more remarkable in the development of deep-water fields with harsher environmental loads. The conventional prediction method of tension variations in hydro-pneumatic tensioner (HPT) has the disadvantage to underestimate the magnitude of cyclic loads. The actual excessive dynamic tension variations are larger when considering the viscous frictional fluid effects. In this paper, a suppression method of tension variations in HPT is modeled by incorporating the magneto-rheological (MR) damper and linear-force actuator. The mathematical models of the combined HPT and MR damper are developed and a force-control scheme is introduced to compensate the excessive tension variations on the riser tensioner ring. Numerical simulations and analyses are conducted to evaluate the suppression of tension variations in HPT under both regular- and irregular-wave conditions for a drilling riser of a tensioned-leg platform (TLP). The results show that significant reduction of tension variations can be achieved by introducing the proposed system. This research has provided a theoretical foundation for the HPT tension control and related structural protection.

A novel method to specify pattern recognition of actuators for stress reduction based on Particle swarm optimization method

  • Fesharaki, Javad Jafari;Golabi, Sa'id
    • Smart Structures and Systems
    • /
    • v.17 no.5
    • /
    • pp.725-742
    • /
    • 2016
  • This paper is focused on stiffness ratio effect and a new method to specify the best pattern of piezoelectric patches placement around a hole in a plate under tension to reduce the stress concentration factor. To investigate the stiffness ratio effect, some different values greater and less than unity are considered. Then a python code is developed by using particle swarm optimization algorithm to specify the best locations of piezoelectric actuators around the hole for each stiffness ratio. The results show that, there is a line called "reference line" for each plate with a hole under tension, which can guide the location of actuator patches in plate to have the maximum stress concentration reduction. The reference line also specifies that actuators should be located horizontally or vertically. This reference line is located at an angle of about 65 degrees from the stress line in plate. Finally two experimental tests for two different locations of the patches with various voltages are carried out for validation of the results.

Development of Prediction Model for Sidewall Curl in Sheet Meta1 Forming(II)-Experimental Validation (박판성형시 컬 예측모델 개발(II)-실험적 검증)

  • Joo, B.D.;Park, H.K.;Kim, D.W.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.438-442
    • /
    • 2007
  • Sidewall curl is the curvature that results from non-uniform through-thickness strain present in the sheet stamping process which involves material flow over a die radius. In order to understand and control curl for tight fit-up tolerances, an analytical model that can provide a reliable measure for the amount of curl would be very helpful. In this study, a model is developed based on the moment-curvature relationship during bending-under-tension operations. For the verification of analytical model, sidewall curl is experimentally measured after deformation of a strip using a bending-under-tension test system. The results show a consistent relationship between the theoretically predicted value and the experimentally obtained one, especially in regions of high curl.

Experimental Study on Failure Behavior of Plain Concrete - Biaxial Stress Test (콘크리트 파괴거동특성의 실험적 연구I-이축응력시험)

  • 이상근;이상민;박상순;한상훈;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.315-320
    • /
    • 2003
  • Two different strength types of plain concrete plate specimens (200$\times$200$\times$60mm) were tested under different biaxial load combinations. The specimens were subjected to biaxial combinations covering the three regions of compression-compression, compression-tension, and tension-tension. The loading platens with Teflon pads were used to reduce a confining effect in boundary surface between the concrete specimen and the solid platen. The principal deformations in the specimens were recorded, and the failure modes along with each stress ratio were examined. Based on the strength data, the failure envelops were developed for each type of plain concrete. The biaxial stress-strain responses of concrete plate specimens for three biaxial loading regions were also plotted. The test data indicated that the strength of concrete under biaxial compression ($f_2 / f_1$$_1$=-1/-1) is about 17 percent larger than under uniaxial compression.

  • PDF