• 제목/요약/키워드: under-tension

검색결과 1,392건 처리시간 0.026초

표면균열을 갖는 원형봉재 시편을 이용한 고온 피로균열성장 연구 (A Study on Elevated Temperature Fatigue Crack Growth Using Round Bar Specimen with a Surface Crack)

  • 소태원;윤기봉
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3415-3423
    • /
    • 1996
  • The compact tension specimen geometry has been widely used for measuring fatigue crack growth rates at elevated temperature when the fatigue load is under tension/tension condition. However, most of the elevated temperature components which have significant crack growth life experience fatigue load under tension/compression conditions. Thus test techniques are required since the compact tension specimen cannot be used for tension/compression loading. In this paper, a simplified test procedure for measureing fatigue crack growth rates is proposed, which employs a round bar specimen with a small surface crack. Fatigue crack growth rates under tension/ tension loading conditions at elevated temperature were measured according to the proposed procedure and compared with those previously measured by C/(T) specimens. Since both the measured crack growth rates were comparable, the fatigue crack growth rates under tension/ compression load can be reliably measured by the proposed procedure. For monitoring crack depth. DC electric potential method is employed and an optimal probe location and current input conditions were proposed.

송전용 고분자 애자의 정적 및 동적인 상태에서 장기 기계적 특성 연구 (A Study on the Long-term Mechanical Properties Under Static and Cyclic State of Composite Insulators for Transmission Lines)

  • 김수연;김영성;홍진영;박완기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.869-871
    • /
    • 1998
  • The extensive use of composite insulators for transmission lines can ultimately be justified only on long-term qualification tests. The actual load working on the insulator in the field is not static load but cyclic load. So in this paper, we discussed an examination of aging degradation by mechanical performance of composite insulators under static tension load and cyclic tension load. and also described useful approaches for analyzing their long term performance so as to develop reliable composite insulators. The static and cyclic tension load-time test data were examined by Weibull distribution for their capability of presuming long term performance. It was found that cyclic tension loads were more severe than static tension loads. The results also indicate that it may be relevant for an user to select composite insulators on basis of their performance under cyclic tension loads than static tension loads.

  • PDF

언더텐션 시스템이 적용된 축소 실험체의 구조적 성능에 대한 연구 (Experimental Investigation of Large-Span Girder with Under-Tension System)

  • 김영민;박대하;이기학;이재홍
    • 한국강구조학회 논문집
    • /
    • 제22권4호
    • /
    • pp.345-354
    • /
    • 2010
  • 기존의 빔과 거더로 이루어진 장스팬 구조물의 경우 기둥 사이의 거리가 길기 때문에 부재의 크기와 수직 처짐이 증가하게 된다. 효과적인 장스팬 구조물의 실현을 위하여 구조물 하부에 스트럿과 케이블로 구성된 언더텐션시스템을 적용하였다. 이는 거더의 휨모멘트를 효과적으로 분산시키기 때문에 부재의 크기를 줄이고 경제적인 효과를 기대할 수 있다. 또한 급속시공을 위한 폐단면 신형상의 모듈화 PF500단면을 사용하여 성능을 검증하고자 하였다. 언더텐션 시스템의 성능검증을 위하여 가로 10m, 세로 2.4m의 실험체 두개를 대상으로 가력실험을 실시하였고 언더텐션 시스템 유무와 케이블 장력변화에 따른 거동을 확인하였다. 실험으로부터 케이블 장력이 증가함에 따라 실험체의 거동이 작아졌으며 언더텐션 시스템이 하중분배 역할을 수행하는 것으로 나타났고 PF500단면의 성능이 우수함을 나타내었다.

궤도차량의 조향시 궤도장력 추정 (Track Tension Estimation in Tracked Vehicles under Steering)

  • 허건수;김정탁;서문석;박동창
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.115-121
    • /
    • 2000
  • In this paper, track tension estimation methods are developed for tracked vehicles which are subject to various maneuvering tasks such as turning and pivoting on flat road. The information of the track tension is very important for the tracked vehicles because the track tension is closely related to the maneuverability and the durability of the tracked vehicles. Kinetic models for the six road-wheels are obtained and used for calculating the track tension around the sprocket. This method does not require the tuning of the turning resistance, which makes it difficult to estimate the track tension in turning. The tension estimation performance of the proposed methods is verified through the simulation of the Multi-body Dynamics tool. The simulation results demonstrate the effectiveness of the proposed method under steering and pivoting of the tracked vehicles.

  • PDF

인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측 (Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings)

  • 박성완;이장규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.352-361
    • /
    • 2003
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was develope(1 where modules decay ratios in tension and shear on used as indicators for damage variables D . In the model, the damage variables are considered to be second-order tensors. Then the maximum principal damage variable, $D^*$ is introduced According to the similarity to the Principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D']. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings on needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

  • PDF

인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측 (Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings)

  • 박성완
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.64-73
    • /
    • 2004
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was developed where modulus decay ratios in tension and shear were used as indicators for damage variables D. In the model, the damage variables are considered to be second-order tensors. Then, the maximum principal damage variable, $D^*$ is introduced. According to the similarity to the principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D]. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the Fatigue characteristics only under uniaxial tension and pure torsion loadings were needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

Prediction of Mechanical Behavior for Carbon Black Added Natural Rubber Using Hyperelastic Constitutive Model

  • Kim, Beomkeun
    • Elastomers and Composites
    • /
    • 제51권4호
    • /
    • pp.308-316
    • /
    • 2016
  • The rubber materials are widely used in automobile industry due to their capability of a large amount of elastic deformation under a force. Current trend of design process requires prediction of functional properties of parts at early stage. The behavior of rubber material can be modeled using strain energy density function. In this study, five different strain energy density functions - Neo-Hookean model, Reduced Polynomial $2^{nd}$ model, Ogden $3^{rd}$ model, Arruda Boyce model and Van der Waals model - were used to estimate the behavior of carbon black added natural rubber under uniaxial load. Two kinds of tests - uniaxial tension test and biaxial tension test - were performed and used to correlate the coefficients of the strain energy density function. Numerical simulations were carried out using finite element analysis and compared with experimental results. Simulation revealed that Ogden $3^{rd}$ model predicted the behavior of carbon added natural rubber under uniaxial load regardless of experimental data selection for coefficient correlation. However, Reduced Polynomial $2^{nd}$, Ogden $3^{rd}$, and Van der Waals with uniaxial tension test and biaxial tension test data selected for coefficient correlation showed close estimation of behavior of biaxial tension test. Reduced Polynomial $2^{nd}$ model predicted the behavior of biaxial tension test most closely.

Tension-Shear Experimental Analysis and Fracture Models Calibration on Q235 Steel

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Yazhi;Zhu, Dongping;Lu, Lu
    • 국제강구조저널
    • /
    • 제18권5호
    • /
    • pp.1784-1800
    • /
    • 2018
  • Tension-shear loading is a common loading condition in steel structures during the earthquake shaking. To study ductile fracture in structural steel under multiple stress states, experimental investigations on the different fracture mechanisms in Chinese Q235 steel were conducted. Different tension-shear loading conditions achieved by using six groups of inclined notch butterfly configurations covering pure shear, tension-shear and pure tension cases. Numerical simulations were carried out for all the specimens to determine the stress and strain fields within the critical sections. Two tension-shear fracture models were calibrated based on the hybrid experimental-numerical procedure. The equivalent fracture strain obtained from the round bar under tensile loading was used for evaluating these two models. The results indicated that the tension-shear criterion as a function of the shear fracture parameter had better performance in predicting the fracture initiation of structural steel under different loading conditions.

Preliminary investigation of Ic homogeneity along the longitudinal direction of YBCO coated conductor tape under tensile loading

  • Dizon, J.R.C.;Oh, S.S.;Sim, K.D.;Shin, H.S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권2호
    • /
    • pp.24-28
    • /
    • 2013
  • In this study, the homogeneity of critical current, $I_c$, along the lengthwise direction in the coated conductor (CC) tape under uniaxial tension was investigated using a multiple voltage tap configuration. Initially, a gradual and homogeneous $I_c$ degradation occurred in all subsections of the tape up to a certain strain value. This was followed by an abrupt $I_c$ degradation in some subsections, which caused scattering in $I_c$ values along the length with increasing tension strain. The $I_c$ degradation behaviour was also explained through n-value as well as microstructure analyses. Subsections showed $I_c$ scattering corresponding to damaged areas of the CC tape revealed that transverse cracks were distributed throughout the gauge length. This homogeneous $I_c$ degradation behaviour under tension is similar with the case under torsion strain but different with the case under hard bending which were previously reported. This behaviour is also different with the case using Bi-2223 HTS tapes under tension strain.

복합하중을 받는 평판에 존재하는 반타원 표면균열의 공학적 탄소성 파괴해석법 (Engineering Elastic-Plastic Fracture Analysis for Semi-Elliptical Surface Cracked Plates Under Combined Bending and Tension)

  • 심도준;김윤재;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제26권6호
    • /
    • pp.1127-1134
    • /
    • 2002
  • The present paper provides an engineering J estimation equation for surface cracked plates under combined bending and tension. The proposed equation is based on the reference stress approach, and the most relevant normalising loads to define the reference stress for accurate J estimations are given for surface cracked plates under combined bending and tension. Comparisons with J results from extensive 3-D FE analyses, covering a wide range of crack geometry, plate geometry and loading combination, show overall good agreement not only at the deepest point but also at arbitrary points along the crack front. for pure tension, agreement between the estimated J and the FE results is excellent, even at the surface point. On the other hand, for pure bending and combined bending and tension, the estimated J values become less accurate for locations close to the surface point. Thus the results in this paper will be useful to assess short-term fracture or low cycle fatigue of surface defects in plates under combined bending and tension.