• Title/Summary/Keyword: under-footing

Search Result 93, Processing Time 0.028 seconds

Contact interface fiber section element: shallow foundation modeling

  • Limkatanyu, Suchart;Kwon, Minho;Prachasaree, Woraphot;Chaiviriyawong, Passagorn
    • Geomechanics and Engineering
    • /
    • v.4 no.3
    • /
    • pp.173-190
    • /
    • 2012
  • With recent growing interests in the Performance-Based Seismic Design and Assessment Methodology, more realistic modeling of a structural system is deemed essential in analyzing, designing, and evaluating both newly constructed and existing buildings under seismic events. Consequently, a shallow foundation element becomes an essential constituent in the implementation of this seismic design and assessment methodology. In this paper, a contact interface fiber section element is presented for use in modeling soil-shallow foundation systems. The assumption of a rigid footing on a Winkler-based soil rests simply on the Euler-Bernoulli's hypothesis on sectional kinematics. Fiber section discretization is employed to represent the contact interface sectional response. The hyperbolic function provides an adequate means of representing the stress-deformation behavior of each soil fiber. The element is simple but efficient in representing salient features of the soil-shallow foundation system (sliding, settling, and rocking). Two experimental results from centrifuge-scale and full-scale cyclic loading tests on shallow foundations are used to illustrate the model characteristics and verify the accuracy of the model. Based on this comprehensive model validation, it is observed that the model performs quite satisfactorily. It resembles reasonably well the experimental results in terms of moment, shear, settlement, and rotation demands. The hysteretic behavior of moment-rotation responses and the rotation-settlement feature are also captured well by the model.

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

The Materials and Shapes of the Western Style Shoes in Korea in the 1920s to 1930s (1920~30년대 한국에서 착용된 양화(洋靴)의 소재와 형태)

  • Kwon, Yunmi;Lee, Eunjin
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.2
    • /
    • pp.224-241
    • /
    • 2017
  • This study considered the change process for Western style shoes in Korea during the time of modernization in the 1920s to 1930s. Western style shoes were one of the items imported by foreigners since the Joseon Dynasty and had a significant impact on Korean dress code. It influence started to spread in the 1900s; however, few high level people wore Western shoes until the 1920s. The trend started to spread through newspaper advertisements and news articles after the mid 1920s. Western shoes such as modern girl and modern boy in the 1930s then entered into Korean culture. Korea under Japanese colonial rule was reorganized on a war footing in the latter half of the 1930s and the main materials for western shoes (cow leather, horse leather and sheepskin) were mobilized as materials for war production; subsequently, new materials using rubber were introduced. The representative material is 'Marine Leather (水産皮革)' and Sharkskin 'Gyoheok (鮫革)' and Whaleskin 'Gyeongpi (鯨皮).' Form is like the material has changed over time. This study also observed the flow of westernized Korean modern shoes as well as analyzed the details of materials and shape of western shoes by period. This represent basic materials to understand the legacy of western shoes in the age; in addition, systemic summary is organized by each kind, shape and materials for each style of western shoes.

Behavior of Concrete Columns Confined by Carbon Fiber Sheets under a Constant Axial Force with Reversed Cyclic Lateral Loading (일정축력하의 탄소섬유쉬트 보강기둥의 횡가력시 거동특성에 관한 실험연구)

  • Chun, Sung-Chul;Park, Hyung-Chul;Ahn, Jae-Hyen;Park, Chil-Lim
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.147-156
    • /
    • 1999
  • An investigation was conducted into the flexural behavior of earthquake damaged reinforced concrete columns repaired with carbon fiber sheets. Six column specimens were tested to failure under reversed cyclic loading. Two columns were specimens for control with no sheets and tested. These columns were repaired with carbon fiber sheets and retested to evaluate the effect of the confinement of the carbon fiber on the damaged column. Another two columns were repaired and tested with no pre-cyclic loading. The test specimens were designed to model single bent under a constant axial force with reversed cyclic lateral loading. Carbon fiber sheets were used to repair damaged concrete columns in the critically stressed areas near the column footing joint and the physical, mechanical properties of carbon fiber sheets are described. The performance of repaired columns in terms of their hysteretic response is evaluated and compared to those of the original columns. The results indicate that the repaire technique with carbon fiber sheets is highly effective. Both flexural strength and displacement ductility of repaired columns were higher than those of the original columns.

Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio (형상비 2.5의 RC 교각의 내진 곡률연성도)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Due to the 1989 Loma Prieta, 1995 Hyogoken Nambu earthquakes, etc, a number of bridge columns  were collapsed in flexure-shear failures as a consequence of the premature termination of the column longitudinal reinforcement. Nevertheless, previous researches for the performance of bridge columns were concentrated on the flexural failure mode. It is well understood that the seismic behaviour of RC bridge piers was dependent on the performance of the plastic hinge of RC bridge piers, the ductility of which was desirable to be computed on the basis of the curvature. Experimental investigation was made to evaluate the variation of the curvature of the plastic hinge  region for the seismic performance of earthquake-damaged RC columns in flexure-shear failure mode. Seven test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading under a constant axial load, $P=0.1f_{ck}A_g$. Residual seismic capacity of damaged specimens was evaluated by analzying the moment-curvature hysteresis and the curvature ductility. Test results show that the biggest curvature was developed around 15cm above the footing, which induced the column failure. It was observed that RC bridge specimens with lap-spliced longitudinal steels appeared to fail at low curvature ductility but significant improvement was made in the curvature ductility of RC specimens with FRP straps wrapped around the plastic hinge region. Based on the experimental variation of the curvature of RC specimens, new equivalent length of the plastic hinge region was proposed by considering the lateral confinement in this study. The analytical and experimental relationship between the displacement and the curvature ductility were compared based on this proposal, which gave excellent result.

A Investigation and Study on the Farm Mechanization in Korea (우리나라 농업기계화에 관한 조사연구)

  • 최재갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.3
    • /
    • pp.2349-2371
    • /
    • 1971
  • 1. The historical development of the agriculture in Korea is observed and the future of Korean agriculture is suggested with present situation in order to recommend a direction of policy in agricultural mechanization. 2. A factor analysis of agricultural mechanization The needs of agricultural mechanization in the view of both national need and the armer's desire under the present situation are analyzed with data from the various sources. The researcher found that the agricultural mechanization is badly needed to develop prospective Korean agriculture to future. 3. The direction of agricultural mechanization. It can be said that the position of agriculture in the national economy plays a very important role. This importance should not be ignored by the Politicians in their process of developing long range economy plan. The agricultural mechanization for the modernized Korean agriculture should be directed to increase the most effective results with minimize the least sacrifice. The merry tiller is recommended to the main agricultural machinery in Korea in order to meet its small farming operation un-its(or farm size). Tractor is recommended in the plain area for the crop cultivation. The cooperative cultivation for rice and the upland crops will be developed in the plain area. Tractor, therefore, is recommended for the main agricultural machinery in these areas. Either tractor or merry tiller is recommended to the orchard area by its operating size of the orchard. The researcher also disoussed about the development of animal husbandry on the farm with increasing the farm size in order to develop meadow and pasture nuder the consideration of both the improvement of food consumption and the comprehensive development of national resources. 4. Relationship between the Performance of various agricultural machinery and the economic scale. Because of the agricultural machinery needs an expensive fixed expense(fixed cost) the total expense Per ha of the fixed expense and the operation expense should less than the traditional expense Per Dan Bo with in creased corpgiclds Per Dan Bo. Since the anual fixed expense of the agricultural machinery is figured out by the durability the more the farm size the less fixed expense of machinery is required. The formula of this principle is as follows; fixed expense for Dan Bo=Fixed expense of agricultural machinery farm size(or farming scale) The breaking-even point is the balance point between the expense of the using agricultural machinery and the traditional farming expenses. Labor cost of the Dan Bo is increasing when the management scale increases by the tradititional farming while the machanized management decrease the management cost Per Dan Bo. The reseracher found that the distribution of agricultural machinery will be the adeventeous after the year of 1981 by the result of frguring out the breaking-even point. 5. The Investigate and the conclusion. The purpose of this study is found out the direction of agricultural machanization and the breaking-even point of various agricultural machinery, there for is found out effective of the using various agricultural machinery for Collection cutter, Binder, Footing thresser, Semi-power thresser, Power thresser, Combine, Power rice-Trans-Planter, etc.

  • PDF

Evaluation of Structural Stability of Plastic Greenhouses with Steel Spiral Piles on Reclaimed Lands (간척지에서 강재 나선말뚝기초를 적용한 플라스틱 온실의 안전성 평가)

  • Yum, Sung Hyun;Lee, Won Bok
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.27-34
    • /
    • 2017
  • This study was carried out to estimate structural stabilities in respect of ground footings of plastic greenhouses on reclaimed lands. A 6m-wide multi-span plastic greenhouse with steel spiral piles as well as two 8.2m-wide single-span greenhouses with steel spiral piles and continuous pipe foundation respectively were built up on a reclaimed land with a SPT N-Value of 2 and measured how much the greenhouses were lifted up and subsided. In addition, the uplift capacity of three kinds of spiral piles(${\phi}50$, ${\phi}75$ and ${\phi}100$) was determined on a nearby reclaimed land. The results showed that the greenhouses with spiral piles had a slight vertical displacement like moving up and down but the scales of the rising up and sinking were negligible when compared to that of the greenhouses. The vertical displacement of the multi-span greenhouse ranged from +9.0mm(uplift) to -11.5mm(subsidence). As for the single-span greenhouses with spiral piles and continuous pipe foundation, the measurements showed that it varied from +1.3mm to -7.7mm and from +0.9mm to -11.2mm, respectively. The allowable uplift capacity of spiral piles could all be determined under criteria of ultimate load and accordingly had a value of 0.40kN, 1.0kN and 2.5kN, respectively. It was not entirely certain enough to make a final judgement on structural stabilities in respect of ground footings, it appeared likely however that the greenhouses with steel spiral piles was tentatively observed without any problems on reclaimed lands within the period.

Evaluation of Corrosion Effects on Permanent Ground Anchors (영구 지반앵커에 대한 부식의 영향 평가)

  • Park, Hee-Mun;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.27-36
    • /
    • 2004
  • The corrosion rate measurement procedure for the permanent ground anchors using polarization resistance measurements and electrochemical impedance spectroscopy is presented in this paper. The polarization resistance measurements were used to determine the correlation between corrosion rate in the steel and soil characteristics. The electrochemical impedance spectroscopy was used to predict the time dependent corrosion reaction and evaluate the different type of coating systems and the effect of cement grouting on the corrosion attack under various conditions. The results indicate that a low pH soil is a good indicator of a corrosive soil. The low pH soil condition (<5) in both clay and sand has a significant effect on the corrosion reaction of steel members in permanent found anchors. In the case of neutral and alkaline conditions beyond pH 6 in clay and sand, no consistent acceleration of corrosion was measured and the corrosion rate was constant regardless of variations of soil pH levels. Laboratory test data for porcelain clay indicate that the change of soil pH level has a small influence on the corrosion reaction in the steel member. The use of cement footing in the bonded length is sufficient to decrease the corrosion rate to a level close to 0.003∼0.01mm/y at the end of the given period. With epoxy and fusion bonded epoxy coating, the steel specimens remained unaffected and retained the original condition. It is suggested that epoxy and fusion bonded epoxy coating can provide effective protection against corrosion for a long time even in aggressive environment.

Characteristics of Bearing Capacity under Square Footing on Two-layered Sand (2개층 사질토지반에서 정방형 기초의 지지력 특성)

  • 김병탁;김영수;이종현
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.289-299
    • /
    • 2001
  • 본 연구는 균질 및 2개층 비균질지반에서 사질토지반 상에 놓인 정방형 기초의 극한지지력과 침하에 대하여 고찰하였다. 본 연구는 얕은기초의 거동에 대한 정방형 기초의 크기, 지반 상대밀도, 기초 폭에 대한 상부층의 두께 비(H/B), 상부층 아래 경계면의 경사($\theta$) 그리고 지반강성비의 영향을 규명하기 위하여 모형실험을 수행하였다. 동일 상대밀도에서 지지력 계수($N_{{\gamma}}$)는 일정하지 않으며 기초 폭에 직접적으로 관련되며 지지력계수는 기초 폭이 증가함에 따라 감소하였다. 기초크기의 영향과 구속압력의 영향을 고려하는 Ueno 방법에 의한 극한지지력의 예측값은 고전적인 지지력 산정식보다 더 잘 일치하며 그 값은 실험값의 65% 이상으로 나타났다. $\theta$=$0^{\circ}$인 2개층 지반의 결과에 근거하여, 극한지지력에 대한 하부층 지반의 영향을 무시할 수 있는 한계 상부층 두께는 기초 폭의 2배로 결정되었다. 그러나, 73%의 상부층 상대밀도인 경우는 침하비($\delta$B) 0.05 이하에서만 이 결과가 유효하였다. 경계면이 경사진 2개층 지반의 결과에 근거하여, 상부층의 상대밀도가 느슨할수록 그리고 상부층의 두께가 클수록 극한지지력에 대한 경계면 경사의 영향은 크지 않는 것으로 나타났다. 경계면의 경사가 증가함에 따른 극한침하량의 변화는 경계면이 수평인 경우($\theta$=$0^{\circ}$)를 기준으로 0.82~1.2(상부층 $D_{r}$=73%인 경우) 그리고 0.9~1.07(상부층 $D_{r}$=50%인 경우) 정도로 나타났다.Markup Language 문서로부터 무선 마크업 언어 문서로 자동 변환된 텍스트를 인코딩하는 경우와 같이 특정한 응용 분야에서는 일반 문자열에 대한 확장 인코딩 기법을 적용할 필요가 있을 수 있다.mical etch-stop method for the etching of Si in TMAH:IPA;pyrazine solutions provides a powerful and versatile alternative process for fabricating high-yield Si micro-membranes. the RSC circle, but also to the logistics system in the SLC circle. Thus, the RSLC model can maximize combat synergy effects by integrating the RSC and the SLC. With a similar logic, this paper develops "A Revised System of Systems with Logistics (RSSL)" which combines "A New system of Systems" and logistics. These tow models proposed here help explain several issues such as logistics environment in future warfare, MOE(Measure of Effectiveness( on logistics performance, and COA(Course of Actions) for decreasing mass and increasing velocity. In particular, velocity in logistics is emphasized.

  • PDF

Numerical Studies on Combined VH Loading and Inclination Factor of Circular Footings on Sand (모래지반에서 원형기초의 수직-수평 조합하중 지지력과 경사계수에 대한 수치해석 연구)

  • Kim, Dong-Joon;Youn, Jun-Ung;Jee, Sung-Hyun;Choi, Jaehyung;Lee, Jin-Sun;Choo, Yun Wook
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.3
    • /
    • pp.29-46
    • /
    • 2014
  • For circular rigid footings with a rough base on sand, combined vertical - horizontal loading capacity was studied by three-dimensional numerical modelling. A numerical model was implemented to simulate the swipe loading and the probe loading methods and an interpretation procedure was devised in order to eliminate the numerical error from the restricted mesh density. Using the Mohr-Coulomb plasticity model, the effect of friction angle was studied under the associated flow-rule condition. The swipe loading method, which is efficient in that the interaction diagram can be drawn with smaller number of analyses, was confirmed to give similar results with the probe loading method, which follows closely the load-paths applied to real structures. For circular footings with a rough base, the interaction diagram for combined vertical (V) - horizontal (H) loading and the inclination factor were barely affected by the friction angle. It was found that the inclination factors for strip and rectangular footings are applicable to circular footings. For high H/V ratios, the results by numerical modelling of this study were smaller than the results of previous studies. Discussions are made on the factors affecting the numerical results and the areas for further researches.