• Title/Summary/Keyword: unconfined vapor cloud explosion

Search Result 11, Processing Time 0.027 seconds

The Method of Consequence Analysis of the Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Gas-Liquid Flow for the Small and Medium Size Enterprises(SMS) (기-액흐름 연속누출에 의한 개방공간 증기운 폭발사고를 중심으로 중.소규모 사업장을 위한 사고 영향평가 방법)

  • 장서일;이헌창;조지훈;김태옥
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.64-70
    • /
    • 2003
  • For the unconfined vapor cloud explosion(UVCE) accident by the continuous release of gas-liquid flow of various saturated liquids in a vessel at ground level, overpressures were estimated by TNT equivalency model with two estimation methods, such as UVCE I model based on a constant release time and UVCEII model based on a real travel time of vapor by dispersion and analyzed with various release conditions. As a simulation result the simple, easy, and correct method of evaluation of consequences of the UVCE accident was proposed by using consequences of UVCE I model and correlation equations for differences of overpressures between UVCE models, so that this evaluation method could be used easily in the small and medium size enterprises without using the dispersion model.

The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Gas-Liquid Flow (기-액흐름 연속누출에 의한 개방공간 증기운 폭발사고의 영향평가)

  • 장서일;이헌창;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • For the unconfined vapor cloud explosion accident by the continuous release of gas-liquid flow of various saturated liquids in a vessel at ground level, overpressures were estimated and analyzed with various release conditions and materials by TNT equivalency model with vapor dispersion. We found that at same release conditions, overpressure showed n-heptane > xylene > n-hexane > toluene > n-heptane > benzene, respectively and that overpressure was increased with increasing the hole diameter and the storage pressure, but it was increased with decreasing the wind speed, the interested distance, and the vessel thickness.

Parameters Affecting the Consequences of the Unconfined Vapor Cloud Explosion Accident by the Release of Heavy Gas (무거운 가스의 누출에 의한 개방공간 증기운 폭발사고에서 사고결과에 미치는 매개변수의 영향)

  • Kim, Tae-Ok;Ham, Byeong-Ho;Cho, Ji-Hoon
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.3
    • /
    • pp.21-27
    • /
    • 2007
  • This paper analyses the effect of parameters on the consequences of the unconfined vapor cloud explosion accident (UVCE) by the release of heavy gas (xylene vapor). Simulation results showed that the overpresure was increased with the increase of the release hole diameter and with the decrease of the interested distance and the wind speed. While, the overpresure was not nearly affected by the release height, weather and environmental conditions. From the results of the consequence analysis and analysis of affecting the consequences of UVCE, the emergency plan should be established taking into account these parameters.

Construction of Expert System for Hazard Assessment of Unconfined Vapor Cloud Explosion (증기운 폭발의 위험성 평가를 위한 전문가 시스템의 구축)

  • 함병호;손민일;김태옥;조지훈;이영순
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.2
    • /
    • pp.97-104
    • /
    • 1995
  • To evaluate readily the effect of unconfined vapor cloud explosion(UVCE) having high possibility of accident and risk in chemical industries, the expert system of UVCE was developed and its applicability on a real accident was analyzed. We found that the hazard of UVCE could be well evaluated from the TNT equivalency model and the empirical loss data produced by overpressure for chemical facilities. By using the developed expert system, the size of vapor cloud, the quantity of vaporization, the released energy, the overpressure range from explosion point, and the impact damage of each installation could be estimated respectively. Also, probable maximum loss and catastrophic loss potential for real accident( cyclohexane release in Flixborough Nypro company) were estimated and compared with damages of the accident. As a result, the developed expert system could be well applicable to real accident.

  • PDF

The Consequence Analysis for Unconfined Vapor Cloud Explosion Accident by the Continuous Release of Butane Vapor in the Debutanizing Process of Naphtha Cracking Plant (나프타분해플랜트의 부탄추출공정에서 부탄증기의 연속누출에 의한 증기운 폭발사고의 영향평가)

  • 손민일;이헌창;장서일;김태옥
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.4
    • /
    • pp.33-43
    • /
    • 2000
  • The consequence analysis for the unconfined vapor cloud explosion(UVCE) accident by the continuous release of butane vapor was performed and effects of process parameters on consequences were analyzed in standard conditions. For the case of continuous release(87.8 kg/s) of butane vapor at 8 m elevated height in the debutanizing process of tile naphtha cracking plant operating at 877 kPa & 346.75 K, we found that combustion ranges of dispersed vapor estimated by HMP model were 11.2~120.2 m and overpressures estimated by TNT equivalency model at 200 m were about 37.35~55.1 kPa. Also, overpressures estimated by Model UVCE I based on advective travel time to $X_{LFL}$ were smaller than those estimated by Model UVCE IIbased on real travel time between $X_{UFL}$ and $X_{LFL}$. At the same time, damage intensities at 200 m and effect ranges by overpressure could be predicted. Furthermore, simulation results showed that effects of operating pressures on consequences were larger than those of operating temperatures and results of accidents were increased with increasing operating pressures. At this time, sensitivities of overpressures for UVCE accident by the continuous release were about 5 kPa/atm.

  • PDF

3D Terrain Model Application for Explosion Assessment

  • Kim, Hyung-Seok;Chang, Eun-Mi;Kim, In-Won
    • 한국지역지리학회:학술대회
    • /
    • 2009.08a
    • /
    • pp.108-115
    • /
    • 2009
  • An increase in oil and gas plants caused by development of process industry have brought into the increase in use of flammable and toxic materials in the complex process under high temperature and pressure. There is always possibility of fire and explosion of dangerous chemicals, which exist as raw materials, intermediates, and finished goods whether used or stored in the industrial plants. Since there is the need of efforts on disaster damage reduction or mitigation process, we have been conducting a research to relate explosion model on the background of real 3D terrain model. By predicting the extent of damage caused by recent disasters, we will be able to improve efficiency of recovery and, sure, to take preventive measure and emergency counterplan in response to unprepared disaster. For disaster damage prediction, it is general to conduct quantitative risk assessment, using engineering model for environmentaldescription of the target area. There are different engineering models, according to type of disaster, to be used for industry disaster such as UVCE (Unconfined Vapor Cloud Explosion), BLEVE (Boiling Liquid Evaporation Vapor Explosion), Fireball and so on, among them.we estimate explosion damage through UVCE model which is used in the event of explosion of high frequency and severe damage. When flammable gas in a tank is released to the air, firing it brings about explosion, then we can assess the effect of explosion. As 3D terrain information data is utilized to predict and estimate the extent of damage for each human and material. 3D terrain data with synthetic environment (SEDRIS) gives us more accurate damage prediction for industrial disaster and this research will show appropriate prediction results.

  • PDF

Hazard Distance from Hydrogen Accidents (수소가스사고의 피해범위)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2012
  • An analysis was completed of the hazards distance of hydrogen accidents such as jet release, jet fire, and vapor cloud explosion(VCE) of hydrogen gas, and simplified equations have been proposed to predict the hazard distances to set up safety distance by the gas dispersion, fire, and explosion following hydrogen gas release. For a small release rate of hydrogen gas, such as from a pine-hole, the hazard distance from jet dispersion is longer than that from jet fire. The hazard distance is directly proportional to the pressure raised to a half power and to the diameter of hole and up to several tens meters. For a large release rate, such as from full bore rupture of a pipeline or a large hole of storage vessel, the hazard distance from a large jet fire is longer than that from unconfined vapor cloud explosion. The hazard distance from the fire may be up to several hundred meters. Hydrogen filling station in urban area is difficult to compliance with the safety distance criterion, if the accident scenario of large hydrogen gas release is basis for setting up the safety distance, which is minimum separation distance between the station and building. Therefore, the accident of large hydrogen gas release must be prevented by using safety devices and the safety distance may be set based on the small release rate of hydrogen gas. But if there are any possibility of large release, populated building, such as school, hospital etc, should be separated several hundred meters.

An Evaluation of the Fire and Explosion Effect by BTX released in a Chemical Plant (화학공장에서의 BTX누출에 의한 화재$\cdot$폭발 영향 평가)

  • Park Ki-Chang;Kim Byung-Jick
    • Journal of the Korean Institute of Gas
    • /
    • v.4 no.3 s.11
    • /
    • pp.9-18
    • /
    • 2000
  • Accident analysis are useful in the design stage of chemical plants and their surrounding structures. Also, analysis results are required for safety management of existing plants. In this paper, the fire and explosion effect by BTX released was evaluated. The computer program was prepared for accident analysis and adopted for evaluating the magnitude of fire (pool fire) and explosion (UVCE) effect. The thermal radiation was used as a measure of fire magnitude and the overpressure as a measure of explosion magnitude. And probit analysis was made for each case. As a case study, benzene tank model was used. The simulation results of explosion of benzene showed that the damage within 20 meters from the accident spot was severe and the damage beyond 60 meters was negligible. The simulation results of fire of benzene showed that the damage in summer is bigger than that in winter. And the damage of city located inland seems to be bigger than that of city in seaside. And thermal radiation effects was negligible beyond 40 meters-distance from the accident spot.

  • PDF

Risk Assessment and Safety Measures for Methanol Separation Process in BPA Plant (BPA 공장의 메탄올 분리공정에서 위험성 평가 및 안전대책)

  • Woo, In-Sung;Lee, Joong-Hee;Lee, In-Bok;Chon, Young-Woo;Park, Hee-Chul;Hwang, Seong-Min;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • For a methanol separation column of the BPA (Bisphenol A) plant, HAZOP (hazard and operability) assessment was performed and damage ranges were predicted from the accident scenarios for the fire and the explosion. As a result, the damage range of the jet fire was 20 m in the case of rupture of the discharge pipe (50 mm diameter) of safety valve, and that of the flash fire was 267 m in the case of catastrophic rupture. Also, the damage ranges of the unconfined vapor cloud explosion (UVCE) for the rupture of the discharge pipe and for the catastrophic rupture were 22 m and 542 m, respectively. For the worst case of release scenarios, safety measures were suggested as follows: the pressure instruments, which can detect abnormal rise of the internal pressure in the methanol separation column, should be installed by the 2 out of 3 voting method in the top section of the column. Through the detection, the instruments should simultaneously shut down the control and the emergency shut-off valves.