• Title/Summary/Keyword: unconfined compress strength

Search Result 3, Processing Time 0.015 seconds

Freezing-thawing resistance evaluation of sandy soil, improved by polyvinyl acetate and ethylene glycol monobutyl ether mixture

  • Fard, Ata Rezaei;Moradi, Gholam;Ghalehjough, Babak Karimi;Abbasnejad, Alireza
    • Geomechanics and Engineering
    • /
    • v.23 no.2
    • /
    • pp.179-187
    • /
    • 2020
  • Freezing-thawing cycles have significant effect on soils engineering behavior in frozen areas. This effect is more considerable in fine-graded than coarse-grained soils. The objective of this study is improving soil durability and strength in continues freezing-thawing cycles. For getting this purpose mixture of Polyvinyl Acetate (PVAc) and Ethylene Glycol Monobutyl Ether (EGBE) has been added to fine-grained soil and final prepared samples were tested at different freezing-thawing cycles. PVAc was mixed with 1%, 2% and 3% of soil weight. Half of PVAc weight was used as weight of EGBE. Freezing-Thawing cycles were exposed to samples and they were tested at different cycles. Results showed that adding mixture of PVAc+EGBE improved strength and durability of samples up to 10 freezing-thawing cycles. Unconfined compress strength tests were applied to samples and stress and strain of samples were tested on failure time. Behavior of samples was different at different percentages of mixture. Results showed that increasing amount of PVAc from 1% to 2% had more considerable effect on final stress than 2% to 3%. Using higher percentages of PVAc + EGBE mixture leaded to that samples carried more strain before collapsing. Another result gained from tests was that, freezing-thawing effect was more considerable after fourth cycles. It means differences between first and fourth cycles were more considerable than differences between fourth and tenth.

Improving performance of soil stabilizer by scientific combining of industrial wastes

  • Yu, Hao;Huang, Xin;Ning, Jianguo;Li, Zhanguo;Zhao, Yongsheng
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.247-256
    • /
    • 2016
  • In this paper, based on understanding the design theories on soil stabilization, a series of soil stabilizers were prepared with different kinds of industrial wastes such as calcined coal gangue (CCG), blast furnace slag (SS), steel slag (SL), carbide slag (CS), waste alkali liquor (JY), and phosphogypsum (PG). The results indicated that when the Portland cement (PC) proportion was lower than 20% in the stabilizer, for the soil sample selected from Wuhan (WT) and Beijing (BT), the unconfined compress strength (UCS) of the stabilized soil specimens could increase 4.8 times and 5.4 times respectively than that of the specimens stabilized only by PC; compared with the UCS of the specimen stabilized only by PC, the UCS of the specimen which was made from soil sample WT and stabilized by the stabilizer composed only by CCG, CS, and PG increased 1.5 times, and UCS of the specimen which was made from soil sample BT and stabilized by the stabilizer composed only by SS, JY, and PG increased 4.5 times.

Estimation of the Shaft Resistance of Rock-Socketed Drilled Shafts using Geological Strength Index (GSI를 이용한 암반에 근입된 현장타설말뚝의 주면저항력 산정)

  • Cho, Chun Whan;Lee, Hyuk Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.25-31
    • /
    • 2006
  • It is common to use the unconfined compressive strength (UCS) of intact rock to estimate the shaft resistance of rock socketed drilled shaft. Therefore the most design manuals give a guide to use the UCS of rock core to estimate the shaft resistance of rock-socketed drilled shaft. Recently, however the design manuals for highway bridge (KSCE, 2001) and of AASHTO (2000) were revised to use the UCS of rock mass with RQD instead of the UCS of rock core so that the estimated resistance could be representative of field conditions. Questions have been raised in application of the new guide to the domestic main bed rock types. The intrinsic drawbacks in terms of RQD were comprised in the questions, too. As the results, in 2002 the new guide in the design manual for highway bridge (KSCE, 2001) were again revised to use the UCS of rock core to estimate the shaft resistance of rock-socketed drilled shafts. In this paper, various methods which can estimate the UCS of rock mass from intact rock core were reviewed. It seems that among those, the Hoek-Brown method is very reliable and practical for the estimation of the UCS of rock mass from rock cores. As the results, using the Hoek-Brown failure criterion a modified guide for the estimation of the shaft resistance of rock-socketed drilled shafts was suggested in this paper. Through a case study it is shown that the suggested method gives a good agreement with the measured data.