• Title/Summary/Keyword: unburned hydrocarbon compensation

Search Result 4, Processing Time 0.02 seconds

Determination of Air Fuel Ratio According to Fuel Composition (II) -Compensation of Unburned Gas Concentration in Eltinge Chart- (연료 조성에 따른 공연비 산정 (II) -Eltinge 차트에서 미연 성분의 보상-)

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1563-1571
    • /
    • 2003
  • This paper is the second part of several companion papers which compare the method of Air-fuel ratio(AFR) determination. In the previous paper, Eltinge chart was applied to the arbitrary fuel composition and the charts for gasoline, diesel, methanol, M85, liquefied petroleum gas(LPG), natural gas(NG), propane and butane were illustrated. In Eltinge chart, however, unburned hydrocarbon (UHC) is not used for determination of AFR. For improving accuracy, Eltinge suggested UHC compensation after the AFR reading in the chart. This compensation reduced the difference between real and reading value. In the compensation, however, the correction of oxygen and carbon dioxide is uncertain and there might be a mistake in conversion of UHC reading value. Therefore, the error is overestimated comparing with Spindt one which is most widely used. In addition, there is no comparison of the value with other useful methods. In this paper, the compensation of unburned HC was performed in Eltinge chart and the compensated value was compared with Spindts formula over wide range of AFR. The objects of investigating fuel are gasoline, methanol, NG and LPG. The result shows that Eltinge and Spindt method is flawlessly compatible and the difference between the two methods is under 0.3% in a λrange from 0.9 to 1.7. The method fur debugging instrumentation error is also presented.

Air Fuel Ratio Determination Method for Alternative Fuel Based on Carbon Balance and Linear Equation (탄소 균형과 1차식에 의한 대체 연료의 공연비 산정법)

  • Lee, Jae-Won;Kwon, Soon-Tae;Park, Chan-Jun;Ohm, In-Young
    • Journal of Energy Engineering
    • /
    • v.17 no.4
    • /
    • pp.182-188
    • /
    • 2008
  • This paper is to compare the carbon-balanced and liner air-fuel ratio determination methods for alternative fuels. In the previous work, expansion of Eltinge chart, unburned hydrocarbon compensation, comparison of the results from various methods were discussed. It has been also concluded that Eltinge method might be regarded as the most general equation of AFR determination among the existing ones. In the recent years, however, increasing demand for the environmental preservation, including global warming-up protection, and energy conservation lead to introduce the alternative fuel to the internal combustion engine. Therefore, the exact calculations of AFR for these fuels are needed. Especially, for the fuel that contains oxygen, all AFR calculation equations except Eltinge have to be re-formulated. In this paper, the AFR for alternative fuel were calculated by re-formulated carbon balance, accuracy of which was already confirmed, and linear equations, which are newly proposed by statistical method for each fuel. The results show that AFRs based on carbon balance have a little more error compared with gasoline, however, the accuracy is enough for this formula to apply to various fuel. The proposed linear equation also have excellent accuracy below $\lambda=1.2$.

Air Fuel Ratio and Calculation According to Fuel Composition (III) -Comparison of Various Calculation Method- (연료 조성에 따른 공연비 산정 (III) - 공연비 계산방식간의 상호 비교 -)

  • Park Chanjun;Ohm Inyong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.10
    • /
    • pp.1147-1154
    • /
    • 2004
  • This paper is the third of several companion papers which compare the method of Air-Fuel ratio determination. In the previous works, Eltinge chart was expanded to arbitrary fuel composition as a reference exhaust composition. The compensation of unburned hydrocarbon in Eltinge chart and comparison of Spindt and Eltinge method were also discussed. In addition to Eltinge and Spindt's one, however, there are many methods which calculate Air-Fuel ratio from exhaust emission. Among these methods, carbon balance and oxygen balance are widely used in practice. In some applications, linear formula from statistical method is being used in the field due to its simplicity and convenience. In this paper, these various methods are evaluated and compared with Eltinge results and new linear formula is proposed for the gasoline fuel. The results show that the corrected carbon balance equation has excellent agreement with Eltinge and Spindt's one. On the other hands, the oxygen-balanced formula has a limitation according to the mixture state and AFR. For gasoline fuel, newly proposed linear equation has good compatibility with Eltinge and Spindt up to AFR 17.

Determination of Air Fuel Ratio according to Fuel Composition (I) -Eltinge Chart as a Reference Exhaust Composition- (연료 조성에 따른 공연비 산정 (I) -기준 배기 조성으로서 Eltinge 차트-)

  • Ohm, In-Yong;Park, Chan-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1548-1562
    • /
    • 2003
  • This paper is the first of several companion papers which compare the methods of Air-fuel ratio determination. There are many methods which calculate Air-Fuel ratio from exhaust emission. Most of them are based on the simple chemical equations, which use balance of atom, and the error of the calculation is negligible as far as the instrumentation accuracy is guaranteed. They assume homogeneous mixture and complete combustion to the extent of oxygen availability. Because of these simple assumptions, they cannot offer the information about the fuel distribution state and the malfunction of instrument. For these limitations, Eltinge offered new one based on stricter mathematical model. This result coincides with the others very well and gives more information about the mixture state and instrumentation. Consequently this might be a general solution for Air-fuel ratio determination and exhaust composition. The objects of the calculation, however, were not commercial fuels except gasoline and the compensation method of unburned hydrocarbon was not appropriate to recent analyzer. Moreover he did not consider the fuel which contains oxygen, such as methanol, ethanol and blend of gasoline-alcohol. In this paper, Eltinge chart is expanded to the arbitrary fuel composition as the reference exhaust compositions for the purpose of further discussions about Air-fuel ratio determination methods and the charts fur gasoline, diesel, methanol, M85, liquefied petroleum gas(LPG), natural gas(NG), propane, butane are illustrated.